Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

Terahertz spectroscopy and molecular modeling of barbituric acid

Abstract

The well-resolved terahertz (THz) absorption spectrum of barbituric acid has been investigated using terahertz time-domain spectroscopy. Four distinct THz spectral features and two shoulder peaks were observed in the range of 10-124 cm-1. A complete analysis was performed with density functional theory, which provided an excellent agreement between solid-state simulation and experiment. The solid-state analysis indicates that the six experimental spectral features observed at low temperature consist of nine infrared-active vibrational modes. Further simulations based on hydrogen-bond isotopologues were performed to study the involvement of hydrogen bonds in the collective modes. A feature at 118.0 cm-1 mainly stems from the collective vibration of dimer hydrogen bonds (m) while features at 102.0 and 109.6 cm-1 primarily come from the collective vibrations of linear hydrogen bonds (n). The results may be useful for monitoring molecular reaction in industrial production according to the state of hydrogen bonds.

About the Authors

Zh. Zheng
School of Electronic Engineering at Xi'an University of Posts&Telecommunication
China
Xi'an 710121.


Ch. Li
School of Electronic Engineering at Xi'an University of Posts&Telecommunication
China
Xi'an 710121.


J. Dong
School of Electronic Engineering at Xi'an University of Posts&Telecommunication
China
Xi'an 710121.


Sh. Zhou
School of Electronic Engineering at Xi'an University of Posts&Telecommunication
China
Xi'an 710121.


References

1. D. Dragoman, M. Dragoman, Prog. Quantum Electron., 28, 1-66 (2004).

2. M. Mizuno, A. Y. Kaori, J. Biol. Phys., 41, 293-301 (2015).

3. Z. X. Li, J. Zhou, X. S. Guo, B. B. Ji, W. Zhou, D. H. Li, J. Appl. Spectrosc., 85, No. 5, 840-844 (2018)

4. X. Wu, Y. X. Xu, L. Wang, Appl. Phys. Lett., 101, 033704 (2012).

5. M. D. King, W. Ouellette, T. M. Korter, J. Phys. Chem., 115, 9467-9478 (2011).

6. L. Liu, L. Shen, F. Yang, F. Han, P. Hu, M. Song, J. Appl. Spectrosc., 83, 603-609 (2016).

7. M. D. King, W. D. Buchanan, J. Pharm. Sci., 83, 3786-3792 (2011).

8. C. T. Konek, B. P. Mason, J. P. Hooper, C. A. Stoltz, J. Wilkinson, Chem. Phys. Lett., 489, 48-53 (2010).

9. P. M. Hakey, D. G. Allis, M. R. Hudson, W. Ouellette, T. M. Korter, Chem. Phys. Chem., 10, 2434-2444 (2009).

10. M. Takahashi, N. Okamura, X. Fan, H. Shirakawa, H. Minamide, J. Phys. Chem. A, 121, 2558-2564 (2017).

11. C. Oppenheim, T. M. Korter, J. S. Melinger, D. R. Grischkowsky, J. Phys. Chem. A, 114, 12513-12521 (2010).

12. J. Dong, Z. Zhang, H. Zheng, M. Sun, Nanophotonics, 4, 472-490 (2015).

13. B. Lei, J. Wang, J. Li, J. Tang, Y. Wang, W. Zhao, Y. Duan, Opt. Express, 27, 20541-20557 (2019).

14. A. J. Barnes, L. L. Gall, J. Lauransan, J. Mol. Struct., 56, 29-39 (1979).

15. S. Sebastian, H. T. Varghese, Y. S. Mary, C. Y. Panicker, Orient. J. Chem., 26, 1139-1142 (2010).

16. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristal-logr., 220, 567-570 (2005).

17. L. Kleinman, D. M. Bylander, Phys. Rev. Lett., 48, 1425 (1982).

18. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fionlhais, Phys. Rev. B, 46, 6671-6687 (1992).

19. T. C. Lewis, D. A. Tocher, S. L. Price, Cryst. Growth Des., 4, 979-987 (2004).


Review

For citations:


Zheng Zh., Li Ch., Dong J., Zhou Sh. Terahertz spectroscopy and molecular modeling of barbituric acid. Zhurnal Prikladnoii Spektroskopii. 2020;87(6):867-872.

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)