Energy levels and radiative rates in Ga XVII
Abstract
Complete and consistent atomic data, including energy levels, wavelengths, lifetimes and E1, E2, M1, and M2 transition rates, are reported for the low-lying 41 levels of Ga XVII, belonging to the n=3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations act as benchmarks for accurate treatments of relativity, electronic correlation, and quantum electrodynamic (QED) effects in multi-valenceelectron systems. The calculated energy levels are in excellent agreement with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values, including core-valence correction, are found to be in good agreement with other theoretical and experimental values.
About the Authors
F. HuChina
Xuzhou 221018.
Y. Sun
China
Xuzhou 221018.
Ch. Han
China
Xuzhou 221018.
M. Mei
China
Xuzhou 221018.
C. Sang
China
Lanzhou 730050.
H. Liu
China
Mianyang 621900.
Ch. Wang
China
Mianyang 621900.
References
1. N. Heidarian, R. E. Irving, S. R. Federman, D. G. Ellis, S. Cheng, L. J. Curtis, J. Phys. B: At. Mol. Phys., 50, 155007 (2017).
2. T. Rauch, K. Werner, P. Quinet, J. W. Kruk, Astron. Astrophys., 577, A6 (2015).
3. B. He, X. J. Meng, J. G. Wang, Matter Radiat. Extremes, 1, 257-263 (2016).
4. K. M. Aggarwal, At. Data Nucl. Data Tables, 125, 226-260 (2019).
5. J. Q. Li, C. Y. Zhang, R. Si, K. Wang, C. Y. Chen, At. Data Nucl. Data Tables, 126, 158-294 (2019).
6. J. Ekman, P. Jonsson, L. Radziute, G. Gaigalas, G. Del Zanna, I. P. Grant, At. Data Nucl. Data Tables, 120, 152-262 (2019).
7. J. Sugar, V. Kaufman, J. Opt. Soc. Am. B, 1, 218-223 (1984).
8. K. N. Huang, At. Data Nucl. Data Tables, 30, 313-421 (1984).
9. E. Charro, I. Martin, M. A. Serna, J. Phys. B, 33, 1753-1766 (2000).
10. M. J. Vilkas, Y. Ishikawa, J. Phys. B, 37, 4763-4778 (2004).
11. E. Trabert, Atoms, 2, 15-85 (2014).
12. P. Jonsson, G. Gaigalas, J. Bieron, C. F. Fischer, I. P. Grant, Comput. Phys. Commun., 184, 2197-2203 (2013).
13. C. F. Fischer, G. Gaigalas, P. Jonsson, J. Bieron, Comput. Phys. Commun., 237, 184-187 (2019).
14. F. Hu, J. M. Yang, C. K. Wang, L. F. Jing, S. B. Chen, G. Jiang, H. Liu, L. H. Hao, Phys. Rev. A, 84, 042506 (2011).
15. F. Hu, G. Jiang, J. M. Yang, C. K. Wang, X. F. Zhao, L. H. Hao, Eur. Phys. J. D, 61, 15-20 (2011).
16. F. Hu, Y. Sun, M. F. Mei, C. C. Sang, J. Appl. Spectrosc., 85, 749-759 (2018).
17. I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules, Springer, New York (2007).
18. NIST Atomic Spectra Database, http:IIphysics.nist.govIPhysRefDataIASD
19. ADAMANT, http:II158.129.165.241Idbelev.php?zp=31&ip=16&approach=1
20. J. Gillaspy, Trapping Highly Charged Ions: Fundamentals and Applications, Nova Publishers, New York (2001).
21. F. Hu, Y. Sun, M. F. Mei, Can. J. Phys., 95, 59-64 (2017).
22. G. Gaigalas, C. Froese. Fischer, P. Rynkun, P. Jonsson, Atoms, 5, 6 (2017).
23. T. Shirai, J. Reader, A. E. Kramida, J. Sugar, J. Phys. Chem. Ref. Data, 36, 509-615 (2007).
24. J. Ekman, M. R. Godefroid, H. Hartman, Atoms, 2, 215-224 (2014).
Review
For citations:
Hu F., Sun Y., Han Ch., Mei M., Sang C., Liu H., Wang Ch. Energy levels and radiative rates in Ga XVII. Zhurnal Prikladnoii Spektroskopii. 2020;87(6):1017(1)-1017(7).