Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

Energy dispersive X-ray fluorescence matrix analysis for nutrients in fenugreek plant-soil set-up influenced by both fertilization and soil texture

Abstract

In energy dispersive X-ray fluorescence (EDXRF) analytical studies of samples, the absorption and enhancement of analyte X-rays, collectively called matrix effects, complicate the relation between intensity of analyte X-rays and its concentration. Earlier, the absorption and enhancement relative terms have been derived from the built-up experimental relations of analyte X-ray counts with XRF fundamental parameters and the parameters of the experimental set-up for each selective and enhanced X-rays. Now, the terms are implemented on the determined amounts of potassium and calcium nutrients in plants and pot soils from an experiment performed in the lab by growing fenugreek plants on the soils with variable contamination levels and applied fertilizers. The variation pattern of the terms with respective nutrient contents is found to be affected by the basic nature of soils. The pattern shows the high sensitivity of the terms to the plant's behaviour in soil and reflects the picture of supressed benefits of applied fertilizers to the heavy-metals contaminated soils.

About the Authors

P. Rao
Nuclear Science Laboratories, Physics Department, Punjabi University
India
Patiala 147002.


R. Mittal
Nuclear Science Laboratories, Physics Department, Punjabi University
India
Patiala 147002.


References

1. E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed., Plenum Press, New York, London (1975).

2. R. Jenkins, R. W. Gould, D. Gedcke, Quantitative X-ray Spectrometry, 2nd ed., Marcel Dekker Inc., New York (1995).

3. B. Beckhoff, B. Kanngieber, N. Langhoff, R. Wedell, H. Wolff, Handbook of Practical X-Ray Fluorescence Analysis, Springer-Verlag Berlin, Heidelberg, Germany (2006).

4. M. Bansal, R. Mittal, DAE-BRNS Symposium on Atomic Molecular and Optical Physics (NCAMP-XVII), IUAC, New Delhi, 138 (2009).

5. M. Bansal, R. Mittal, Asian J. Chem., 21b, 264-270 (2009).

6. M. Bansal, K. Deep, R. Mittal, Appl. Radiat. Isot., 70, 2525-2533 (2012).

7. T. Crommentuijn, M. D. Polder, E. J. van de Plassche, RIVM Report no. 601501 001, Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account (1997).

8. H. Shayler, M. McBride, E. Harrison, Cornell Waste Management Institute 2009, 1-6 (2009).

9. G. S. Dheri, M. S. Brar, S. S. Malhi, Commun. Soil Sci. Plant Anal., 38, 1655-1672 (2007).

10. S. Singh, M. Zacharias, S. Kalpana, S. Mishra, J. Environ. Chem. Ecotoxicol., 4, 75-81 (2012).

11. K. Grodzinvska, Int. J. Environ. Pollut., 9, 83-97 (1978).

12. R. Kostka-Rick, W. J. Manning, Environ. Pollut., 82, 107-138 (1993).

13. R. Mittal, K. L. Allawadhi, B. S. Sood, N. Singh, Anita, P. Kumar, X-ray Spectrom., 22, 413-417 (1993).

14. I. Cakmak, J. Plant Nutr. Soil Sci., 168, 521-530 (2005).

15. Q. R. Wang, Y. S. Cui, X. M. Liu, Y. T. Dong, P. Christie, J. Environ. Sci. Health, A, 38, 823-838 (2011).

16. S. Chen, L. Sun, T. Sun, L. Chao, G. Guo, Environ. Geochem. Health, 29, 435-446 (2007).

17. P. K. Hepler, Plant Cell, 17, 2142-2155 (2005).

18. S. T. Jakobsen, Acta Agric. Scand. B: Soil Plant Sci., 43, 6-10 (2009).

19. M. N. Cordones, F. Aleman, V. M. F. Rubio, J. Plant Physiol, 171, 688-695 (2014).

20. N. Tuteja, S. Mahajan, Plant Signal. Behav., 2, 79-85 (2007).

21. C. Johansen, D. G. Edwards., J. F. Loneragan, Plant Physiol., 43, 1717-1721 (1968).

22. U. R. Malvi, Karnataka J. Agric. Sci, 24, 106-109 (2011).

23. Vandana and R. Mittal, Appl. Radiat. Isot., 54, 377-382 (2001).

24. D. B. Metcalfe, M. Williams, L. E. Aragao, A. C. da Costa, S. S. de Almeida, A. P. Braga, P. H. Goncalves, J. de Athaydes, S. Junior, Y. Malhi, P. A. Meir, New Phytol., 174, 697-703 (2007).

25. R. Mittal, K. L. Allawadhi, B. S. Sood, X-Ray Spectrom., 16, 37-39 (1987).

26. M. Bansal, Studies of X-ray Fluorescence for Its Analytical Applications, Ph.D. Thesis, Punjabi University, Patiala, India (2008)

27. S. Gupta, K. Deep, L. Jain, M. A. Ansari, V. K. Mittal, R. Mittal, Appl. Radiat. Isot., 68, 1922-1927 (2010).

28. Z. Rengel, In: Heavy Metal Stress in Plants, Springer, Berlin, Heidelberg (1999).

29. G. U. Chibuike, S. C. Obiora, Appl. Environ. Soil Sci, 1-12 (2014).

30. D. Cataldo, R. Wildung, Environ. Health Perspect., 27, 149-159 (1978).

31. A. Siedlecka, Acta Soc. Bot. Pol, 64, 265-272 (1995).

32. M. Pesarrakli, Handbook of Plant and Crop Stress, 2nd ed., Marcel Decker Inc., New York (1999).

33. K. L. Sahrawat, J. Indian Soc. SoilSci., 51, 409-417 (2003).

34. M. Becker, F. Asch, J. Plant Nutr. Soil Sci., 168, 558-573 (2005).

35. J. D. Bewley, M. Black, Seeds: Physiology of Development and Germination, Springer, US, 1-27 (1985).

36. R. S. Mehta, B. S. Patel, S. S. Meena, Indian J. Agric. Sci, 80, 970-974 (2010).

37. R. E. D. Snowden (nee Cook), B. D. Wheeler, J. Ecol., 81, 35-46 (1993).

38. J. B. Wilson, Evolution, 42, 408-413 (1988)

39. H. Li, X. Yang, A. C. Luo, J. Plant Nutr., 24, 1849-1860 (2001).

40. B. K. Parida, I. M. Chhibba, V. K. Nayyar, Scientia Hort, 98, 113-119 (2003).

41. L. Kaur, J. Agric. Ecol., 1, 22-34 (2016)

42. T. Tandano, J. Sci. Soil Manure, 41, 498-501 (1970).

43. M. Yamauchi, Plant Soil, 117, 275-286 (1989).

44. B. P. Singh, M. Das, M. Ram, B. S. Dwevedi, R. N. Prasad, J. Indian Soil Sci., 40, 326-328 (1992).

45. K. K. Baruah, B. Nath, Indian J. Plant Physiol., 1, 114-118 (1996).

46. W. F. Lorehwing, Plant Physiol, 3, 261-275 (1928).


Review

For citations:


Rao P., Mittal R. Energy dispersive X-ray fluorescence matrix analysis for nutrients in fenugreek plant-soil set-up influenced by both fertilization and soil texture. Zhurnal Prikladnoii Spektroskopii. 2020;87(6):1023(1)-1023(11).

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)