Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

Extraction of parabens from cosmetic and environmental water samples coupled with UV-visible spectroscopy

Abstract

An effective and fast vortex-assisted dispersive liquid-liquid extraction method was developed for the extraction of paraben in cosmetic samples and water samples. The paraben was determined and quantified using ultraviolet-visible (UV-Vis) spectrometry. A response surface methodology (RSM) based on the central composite design was used for the optimization of factors (composition of the extractant, volume of extractant, extraction time, centrifugation time, and centrifugation velocity) affecting the extraction efficiency of the procedure. The optimum parameters for vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) are: chloroform used as the extractant solvent, 5 ml volume of extractant, 3 min extraction time, 5 min centrifugation time, and 2400 rpm centrifugation velocity. The limit of detection (LOD) and the limit of quantification (LOQ) for paraben are 0.0476 and 0.1442 42 µg/mL, respectively. Spiked cosmetic samples have the extraction recoveries in the range of 81.2-96.8%, whereas spiked water sample extraction recoveries were in the range of 88.8-100.63%. Each sample was repeated (n = 2), with a relative standard deviation of <5.74% for cosmetic samples and <9.03% for water samples. In conclusion, this extraction method is fast and inexpensive for the extraction of paraben.

About the Authors

S. Y. Beh
University Kebangsaan Malaysia
Malaysia
43600 UKM, Bangi, Selangor.


I. W. B. D. Mahfut
University Kebangsaan Malaysia
Malaysia
43600 UKM, Bangi, Selangor.


N. I. B. M. Juber
University Kebangsaan Malaysia
Malaysia
43600 UKM, Bangi, Selangor.


S. Asman
Advanced Analytical and Environmental Chemistry (AdEC), Department of Physics and Chemistry, Faculty of Applied Science and Technology (FAST), University Tun Hussein Onn Malaysia, Education Hub Pagoh
Malaysia
84600 Pagoh, Muar, Johor.


F. Yusoff
Faculty of Science and Marine Environment, University Malaysia Terengganu
Malaysia
21030 Kuala, Terengganu.


N. M. Saleh
University Kebangsaan Malaysia
Malaysia
43600 UKM, Bangi, Selangor.


References

1. T. T. Vo, Y.-M. Yoo, K.-C. Choi, E.-B. Jeung, Reprod. Toxicol., 29, 306-316 (2010).

2. M. Soni, S. L. Taylor, N. Greenberg, G. Burdock, Food Chem. Toxicol., 40, 1335-1373 (2002).

3. M. Farajzadeh, D. Djozan, R. F. Bakhtiyari, Talanta, 1, 1360-1367 (2010).

4. C.-W. Chen, W.-C. Hsu, Y.-C. Lu, J.-R. Weng, C.-H. Feng, Food Chem., 241, 411-418 (2018).

5. R. S. Tavares, F. C. Martins, P. J. Oliveira, J. Ramalho-Santos, F. P. Peixoto, Reprod. Toxicol., 27, 1-7 (2009).

6. T. T. Vo, E.-M. Jung, K.-C. Choi, H. Y. Frank, E.-B. Jeung, Steroids, 76, 675-681 (2011).

7. I. Gonzalez-Marino, J. B. Quintana, I. Rodrigue/, S. Schrader, M. Moeder, Anal. Chim. Acta, 684, 59-66 (2011).

8. M. M. Yusoff, N. Yahaya, N. M. Saleh, M. Raoov, RSC Adv., 8, 25617-25635 (2018).

9. N. Cabaleiro, I. De La Calle, C. Bendicho, I. Lavilla, Anal. Methods, 5, 323-340 (2013).

10. C. Piao, L. Chen, Y. Wang, J. Chromatogr. B, 969, 139-148 (2014).

11. M. Noorashikin, S. Mohamad, M. Abas, Desal. Water Treat., 57, 22353-22361 (2016).

12. M. Noorashikin, N. M. Sohaimi, N. Suda, H. Z. Aziz, S. R. M. Zaini, S. Kandasamy, K. Suresh, J. Sustain. Sci. Manag., 12, 79-95 (2017).

13. Z. Zhong, G. Li, X. Zhong, Z. Luo, B. Zhu, Talanta, 115, 518-525 (2013).

14. Y. Zhang, H. K. Lee, Anal. Chim. Acta, 750, 120-126 (2012).

15. M. Palit, G. Mallard, J. Chromatogr. A, 1218, 5393-5400 (2011).

16. T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, V. Pande, Food Chem., 207, 115-124 (2016).

17. R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons (2016).

18. S. Dharma, H. Masjuki, H. C. Ong, A. Sebayang, A. Silitonga, F. Kusumo, T. Mahlia, Energy Convers. Manage., 115, 178-190 (2016)

19. R. D. Micic, M. D. Tomic, F. E. Kiss, E. B. Nikolic-Djoric, M. D. Simikic, J. Supercrit. Fluids, 103, 90-100 (2015).

20. P. N. Nomngongo, J. C. Ngila, T. A. Msagati, B. Moodley, Microchem. J., 114, 141-147 (2014).

21. U. Alshana, N. Ertas, N. G. Goger, Food Chem., 181, 1-8 (2015).

22. W. Horwitz, AOAC International, Gaithersburg, MD, USA, 12-19 (2002).

23. I. Gonzalez-Marino, J. B. Quintana, I. Rodriguez, R. Cela, Rapid Commun. Mass Spectrom., 23, 1756-1766 (2009).

24. A. Luiz Oenning, D. Lopes, A. Neves Dias, J. Merib, E. Carasek, J. Sep. Sci., 40, 4431-4438 (2017).

25. B. Ebrahimpour, Y. Yamini, A. Esrafili, Anal. Chim. Acta, 751, 79-85 (2012).

26. K. Z. Mousavi, Y. Yamini, S. Seidi, New J. Chem., 42, 9735-9743 (2018).

27. M. S. Norseyrihan, M. S. Noorashikin, M. A. Marinah, S. Y. Beh, A. Ruzita, Malaysian J. Anal. Sci., 22, 365-374 (2018).


Review

For citations:


Beh S.Y., Mahfut I.B., Juber N.B., Asman S., Yusoff F., Saleh N.M. Extraction of parabens from cosmetic and environmental water samples coupled with UV-visible spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2020;87(6):1026(1)-1026(8).

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)