Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method

Abstract

We proposed an algorithm for separating the overlapping spectral components using the Tikhonov weighted regularization method is proposed. The use of the weighting function allows one to significantly reduce the regularization parameters and separate closely spaced spectral lines. The problem of the appearance of spurious oscillations in a sparse solution is solved by an iterative algorithm for correcting the main matrix. To determine the regularization parameter that provides the maximum resolution of the method, the posterior minimum threshold algorithm is used. The use of the algorithm fundamentally improves the quality of spectra processing and increases the information content of the spectroscopic methods. The efficiency of the proposed algorithm is shown on examples of processing the model and experimental Moss-bauer spectra.

About the Authors

O. M. Nemtsova
Udmurt Federal Research Center, Ural branch of Russian Academy of Sciences
Russian Federation

Izhevsk, 426067



G. N. Konygin
Udmurt Federal Research Center, Ural branch of Russian Academy of Sciences
Russian Federation

Izhevsk, 426067



V. E. Porsev
Udmurt Federal Research Center, Ural branch of Russian Academy of Sciences
Russian Federation

Izhevsk, 426067



References

1. D. Hong, J. J. A. van Asten, S. R. Rankouhi, J. W. Thielen, D. G. Norris. J. Mag. Res., 304 (2019) 53—61, https://doi.org/10.1016/j.jmr.2019.05.002

2. V. Fernandez, D. Kiani, N. Fairley, F. X. Felpin, J. Baltrusaitis. Appl. Surf. Sci., 505 (2020) 143841, https://doi.org/10.1016/j.apsusc.2019.143841

3. F. Ambrosino. Appl. Rad. Isot., 159 (2020) 109090, https://doi.org/10.1016/j.apradiso.2020.109090

4. J. M. Borrego, A. Conde, V. A. Pena-Rodriguez, J. M. Greneche. Hyperfine Interact., 131 (2000) 67—82, https://doi.org/10.1023/A:1010858927701

5. N. V. Baidakova, N. I. Chernykh, V. M. Koloskov, Y. N. Subbotin. Ural Math. J., 3, N 2 (2017) 33—39, http://dx.doi.org//10.15826/umj.2017.2.005

6. F. Yue, Cheng Chen, Z. Yan, Chen Chen, Z. Guo, Z. Zhang, Z. Chen, F. Zhang, X. Lv. Photodiagn. Photodyn. Ther., 32 (2020) 101923, https://doi.org/10.1016/j.pdpdt.2020.101923

7. E. Juszyńska-Gałązka, N. Osiecka, A. Budziak. Vib. Spectrosc., 92 (2017) 62—69, https://doi.org/10.1016/).vibspec.2017.05.004

8. P. Jutaporn, M. D. Armstrong, O. Coronell. Water Res., 172 (2020) 115460, https://doi.org/10.1016/j.watres.2019.115460

9. L. Liu, Y. Cheng, X. Sun, F. Pi. Spectrochim. Acta A, 197 (2018) 153—158, https://doi.org/10.1016/j.saa.2018.01.022

10. J. Yang, X. Wang, R. Wang, H. Wang. Geoderma, 380 (2020) 114616, https://doi.org/10.1016/j.geoderma.2020.114616

11. N. Hakimi, A. Jodeiri, M. Mirbagheri, S.K. Setarehdan. Comp. Biol. Med., 121 (2020) 103810, https://doi.org/10.1016/j.compbiomed.2020.103810

12. Z. Shafahi, S. Sina, R. Faghihi. Rad. Phys. Chem., 166 (2020) 108437, https://doi.org/10.1016/j.radphyschem.2019.108437

13. A. L. Gavrilyuk, D. A. Osinkin, D. I. Bronin. Electrochim. Acta, 354 (2020) 136683, https://doi.org/10.1016/j.electacta.2020.136683

14. L. F. Ibáñez, G. Jeschke. J. Mag. Res., 300 (2019) 28—40, https://doi.org/10.1016/jjmr.2019.01.008

15. T. H. Edwards, S. Stoll. J. Mag. Res., 288 (2018) 58—68, http://doi.org/10.1016/jjmr.2018.01.021

16. A. L. Ageev, M. E. Korshunov, T. Ye. Reich, T. Reich, H. Moll. J. Inv. Ill-Posed Problems, 15 (2007) 767—783, https://doi.org/10.1515/jiip.2007.041

17. S. Morigi, L. Reichel, F. Sgallari. Numer. Algor., 43 (2006) 197—213, http://dpi:10.1007/s11075-006-9053-3

18. Zh. Zh. Bai, A. Buccini, K. Hayamic, L. Reichel. J. Comput. Appl. Math., 319 (2017) 1—13, http://dx.doi.org/10.1016/j.cam.2016.12.023

19. A. Buccini. Appl. Num. Math., 116 (2017) 64—81, http://dx.doi.org/10.1016/j.apnum.2016.07.009

20. D. Bianchi, A. Buccini, M. Donatelli, S. Serra-Capizzano. Inverse Prob., 31 (2015) 055005, http://doi:10.1088/0266-5611/31/5/055005

21. G. K. Wertheim. Mossbauer Effect: Principles and Applications, Academic Press (2013)

22. B. K. Teo. EXAFS: Basic Principles and Data Analysis, Springer (1986)

23. J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Division Perkin-Elmer Corporation (1992)

24. Th. Carlson. Photoelectron and Auger Spectroscopy, Springer US (1975), https://www.springer.com/gp/book/9781475701203

25. V. Sizikov, D. Sidorov. Appl. Spectrosc., 71, N 7 (2017) 1640—1651, https://doi.org/10.1177/0003702817694181

26. V. P. Gladkov, V. A. Kashcheev, A. Kh. Kuskov, V. I. Petrov. J. Appl. Spectrosc., 71, N 5 (2004) 731—735, https://doi.org/10.1023/BJAPS.0000049636.15453.0c

27. Yu. A. Babanov, O. M. Nemtsova, I. Yu. Kamensky, S. S. Mikhailova. J. Electron. Spectr., 182, N 3 (2010) 90—96, https://doi.org/10.1016/j.elspec.2010.07.008

28. G. D. Reddy. Appl. Math. Comp., 347 (2019) 464—476, https://doi.org/10.1016/j.amc.2018.11.015

29. O. M. Nemtsova, G. N. Konygin. J. Appl. Spectr., 85 (2018) 931—935, https://doi.org/10.1007/s10812-018-0741-2

30. В. Е. Порсев, О. М. Немцова, Г. Н. Коныгин. Хим. физика и мезоскопия, 21, № 4 (2019) 514—524, https://doi.org/10.15350/17270529.2019.4.54

31. A. N. Tikhonov, V. Y. Arsenin. Solution of Ill-posed Problems, Washington, Winston & Sons (1977)

32. K. Pearson. Phil. Mag, 50, N 5 (2009) 157—175

33. J. Prakash, D. Sanny, S. K. Kalva, M. Pramanik, Ph. K. Yalavarthy. Transact. Med. Imag., 38, N 8 (2019) 1935—1947, http://doi.org/10.1109/TMI.2018.2889314

34. B. Qiao, Junjiang Liu, Jinxin Liu, Zh. Yang, X. Chen. Mech. Syst. Signal Pr., 126 (2019) 341—367, https://doi.org/10.1016/j.ymssp.2019.02.039

35. B. W. Rust, D. P. O’Leary. Inverse Prob., 24 (2008) 034005, http://doi:10.1088/0266-5611/24/3/034005

36. L. Reichel. Num. Algorithms, 63 (2013) 65—87, http://doi.10.1007/s11075-012-9612-8

37. G. N. Konygin, E. P. Elsukov, V. E. Porsev. Phys. Met. Metallogr., 96, N 3 (2003) 298—304

38. A. K. Arzhnikov, L. V. Dobysheva, G. N. Konygin, E. P. Elsukov. Phys. Sol. State, 47, N 11 (2005) 2063—2071, https://doi.org/10.1134/L2131146


Supplementary files

Review

For citations:


Nemtsova O.M., Konygin G.N., Porsev V.E. Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):315-323.

Views: 221


ISSN 0514-7506 (Print)