Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method
Abstract
We proposed an algorithm for separating the overlapping spectral components using the Tikhonov weighted regularization method is proposed. The use of the weighting function allows one to significantly reduce the regularization parameters and separate closely spaced spectral lines. The problem of the appearance of spurious oscillations in a sparse solution is solved by an iterative algorithm for correcting the main matrix. To determine the regularization parameter that provides the maximum resolution of the method, the posterior minimum threshold algorithm is used. The use of the algorithm fundamentally improves the quality of spectra processing and increases the information content of the spectroscopic methods. The efficiency of the proposed algorithm is shown on examples of processing the model and experimental Moss-bauer spectra.
About the Authors
O. M. NemtsovaRussian Federation
Izhevsk, 426067
G. N. Konygin
Russian Federation
Izhevsk, 426067
V. E. Porsev
Russian Federation
Izhevsk, 426067
References
1. D. Hong, J. J. A. van Asten, S. R. Rankouhi, J. W. Thielen, D. G. Norris. J. Mag. Res., 304 (2019) 53—61, https://doi.org/10.1016/j.jmr.2019.05.002
2. V. Fernandez, D. Kiani, N. Fairley, F. X. Felpin, J. Baltrusaitis. Appl. Surf. Sci., 505 (2020) 143841, https://doi.org/10.1016/j.apsusc.2019.143841
3. F. Ambrosino. Appl. Rad. Isot., 159 (2020) 109090, https://doi.org/10.1016/j.apradiso.2020.109090
4. J. M. Borrego, A. Conde, V. A. Pena-Rodriguez, J. M. Greneche. Hyperfine Interact., 131 (2000) 67—82, https://doi.org/10.1023/A:1010858927701
5. N. V. Baidakova, N. I. Chernykh, V. M. Koloskov, Y. N. Subbotin. Ural Math. J., 3, N 2 (2017) 33—39, http://dx.doi.org//10.15826/umj.2017.2.005
6. F. Yue, Cheng Chen, Z. Yan, Chen Chen, Z. Guo, Z. Zhang, Z. Chen, F. Zhang, X. Lv. Photodiagn. Photodyn. Ther., 32 (2020) 101923, https://doi.org/10.1016/j.pdpdt.2020.101923
7. E. Juszyńska-Gałązka, N. Osiecka, A. Budziak. Vib. Spectrosc., 92 (2017) 62—69, https://doi.org/10.1016/).vibspec.2017.05.004
8. P. Jutaporn, M. D. Armstrong, O. Coronell. Water Res., 172 (2020) 115460, https://doi.org/10.1016/j.watres.2019.115460
9. L. Liu, Y. Cheng, X. Sun, F. Pi. Spectrochim. Acta A, 197 (2018) 153—158, https://doi.org/10.1016/j.saa.2018.01.022
10. J. Yang, X. Wang, R. Wang, H. Wang. Geoderma, 380 (2020) 114616, https://doi.org/10.1016/j.geoderma.2020.114616
11. N. Hakimi, A. Jodeiri, M. Mirbagheri, S.K. Setarehdan. Comp. Biol. Med., 121 (2020) 103810, https://doi.org/10.1016/j.compbiomed.2020.103810
12. Z. Shafahi, S. Sina, R. Faghihi. Rad. Phys. Chem., 166 (2020) 108437, https://doi.org/10.1016/j.radphyschem.2019.108437
13. A. L. Gavrilyuk, D. A. Osinkin, D. I. Bronin. Electrochim. Acta, 354 (2020) 136683, https://doi.org/10.1016/j.electacta.2020.136683
14. L. F. Ibáñez, G. Jeschke. J. Mag. Res., 300 (2019) 28—40, https://doi.org/10.1016/jjmr.2019.01.008
15. T. H. Edwards, S. Stoll. J. Mag. Res., 288 (2018) 58—68, http://doi.org/10.1016/jjmr.2018.01.021
16. A. L. Ageev, M. E. Korshunov, T. Ye. Reich, T. Reich, H. Moll. J. Inv. Ill-Posed Problems, 15 (2007) 767—783, https://doi.org/10.1515/jiip.2007.041
17. S. Morigi, L. Reichel, F. Sgallari. Numer. Algor., 43 (2006) 197—213, http://dpi:10.1007/s11075-006-9053-3
18. Zh. Zh. Bai, A. Buccini, K. Hayamic, L. Reichel. J. Comput. Appl. Math., 319 (2017) 1—13, http://dx.doi.org/10.1016/j.cam.2016.12.023
19. A. Buccini. Appl. Num. Math., 116 (2017) 64—81, http://dx.doi.org/10.1016/j.apnum.2016.07.009
20. D. Bianchi, A. Buccini, M. Donatelli, S. Serra-Capizzano. Inverse Prob., 31 (2015) 055005, http://doi:10.1088/0266-5611/31/5/055005
21. G. K. Wertheim. Mossbauer Effect: Principles and Applications, Academic Press (2013)
22. B. K. Teo. EXAFS: Basic Principles and Data Analysis, Springer (1986)
23. J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Division Perkin-Elmer Corporation (1992)
24. Th. Carlson. Photoelectron and Auger Spectroscopy, Springer US (1975), https://www.springer.com/gp/book/9781475701203
25. V. Sizikov, D. Sidorov. Appl. Spectrosc., 71, N 7 (2017) 1640—1651, https://doi.org/10.1177/0003702817694181
26. V. P. Gladkov, V. A. Kashcheev, A. Kh. Kuskov, V. I. Petrov. J. Appl. Spectrosc., 71, N 5 (2004) 731—735, https://doi.org/10.1023/BJAPS.0000049636.15453.0c
27. Yu. A. Babanov, O. M. Nemtsova, I. Yu. Kamensky, S. S. Mikhailova. J. Electron. Spectr., 182, N 3 (2010) 90—96, https://doi.org/10.1016/j.elspec.2010.07.008
28. G. D. Reddy. Appl. Math. Comp., 347 (2019) 464—476, https://doi.org/10.1016/j.amc.2018.11.015
29. O. M. Nemtsova, G. N. Konygin. J. Appl. Spectr., 85 (2018) 931—935, https://doi.org/10.1007/s10812-018-0741-2
30. В. Е. Порсев, О. М. Немцова, Г. Н. Коныгин. Хим. физика и мезоскопия, 21, № 4 (2019) 514—524, https://doi.org/10.15350/17270529.2019.4.54
31. A. N. Tikhonov, V. Y. Arsenin. Solution of Ill-posed Problems, Washington, Winston & Sons (1977)
32. K. Pearson. Phil. Mag, 50, N 5 (2009) 157—175
33. J. Prakash, D. Sanny, S. K. Kalva, M. Pramanik, Ph. K. Yalavarthy. Transact. Med. Imag., 38, N 8 (2019) 1935—1947, http://doi.org/10.1109/TMI.2018.2889314
34. B. Qiao, Junjiang Liu, Jinxin Liu, Zh. Yang, X. Chen. Mech. Syst. Signal Pr., 126 (2019) 341—367, https://doi.org/10.1016/j.ymssp.2019.02.039
35. B. W. Rust, D. P. O’Leary. Inverse Prob., 24 (2008) 034005, http://doi:10.1088/0266-5611/24/3/034005
36. L. Reichel. Num. Algorithms, 63 (2013) 65—87, http://doi.10.1007/s11075-012-9612-8
37. G. N. Konygin, E. P. Elsukov, V. E. Porsev. Phys. Met. Metallogr., 96, N 3 (2003) 298—304
38. A. K. Arzhnikov, L. V. Dobysheva, G. N. Konygin, E. P. Elsukov. Phys. Sol. State, 47, N 11 (2005) 2063—2071, https://doi.org/10.1134/L2131146
Supplementary files
Review
For citations:
Nemtsova O.M., Konygin G.N., Porsev V.E. Separation of Overlapping Spectral Lines Using the Tikhonov Regularization Method. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):315-323.