Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

SPECTROSCOPY DETERMINATION OF METFORMIN IN DRINKING WATER, TABLET, HUMAN SERUM, AND URINE BASED ON THE AGGREGATION OF NANOPARTICLES

Abstract

Simple, rapid, and sensitive ultraviolet-visible spectroscopy method was used to determine ultra-trace amounts of metformin (MET) in several samples such as drinking water, tablet, serum (blood), and urine without preconcentration step. Gold nanoparticles (AuNPs) were synthesized, and determination of MET was carried out based on the surface plasmon resonance property of AuNPs and the interaction between MET and AuNPs. Transmission electron microscopy (TEM) was utilized to characterize the structure of AuNPs before and after addition MET. Also, dynamic light scattering was used to investigate the size of nanoparticles distribution. The results showed that AuNPs were aggregated in the presence of the MET. Some parameters, including pH, AuNPs concentration, contact time, buffers, and ionic strength, were evaluated to select optimum conditions. Linear range obtained was 15–300 μg/L in the optimum conditions. Also, the correlation coefficient (R2), the limit of detection, and limit of quantification were equal to 0.9918, 0.99, and 1.12 μg/L, respectively. In addition, the effect of interfering species was investigated. Finally, the results of the analysis of different real samples indicated that the proposed method was suitable and accurate for determination of MET.

About the Authors

M. Moradi
Department of Chemistry, North Tehran Branch at Islamic Azad University
Islamic Republic of Iran
Tehran


M. R. Sohrabi
Department of Chemistry, North Tehran Branch at Islamic Azad University
Islamic Republic of Iran
Tehran


S. Mortazavinik
Department of Chemistry, North Tehran Branch at Islamic Azad University
Islamic Republic of Iran
Tehran


References

1. C. Goedecke, I. Fettig, C. Piechotta, R. Philipp, S. U. Geissen, Anal. Methods, 9, 1580–1584 (2017).

2. M. Alnajjar, A. Hethnawi, G. Nafie, A. Hassan, G. Vitale, N. N. Nassar, J. Environ. Chem. Eng., 7 (2019).

3. Z. Cai, A. Dhar Dwivedi, W. N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C. H. Huang, J. Fu, Environ. Sci. Nano, 5, 27–47 (2018).

4. F. I. Hai, S. Yang, M. B. Asif, Water, 10, 107–139 (2018).

5. T. Macedo Rosa, A. Carolina Roveda, W. P. da Silva Godinho, C. A. Martins, P. R. Oliveiraa, M. A. Gonçalves Trindade, Talanta, 196, 39–46 (2019).

6. R. Oertel, J. Baldauf, J. Rossmann, J. Chromatogr. A, 1556, 73–80 (2018).

7. R. A. Khalila, A. M. A. Saeed, J. Chin. Chem. Soc., 54, 1099–1105 (2007).

8. A. Saini, J. Singh, R. Kaur, N. Singh, N. Kaur, Sens. Actuat. B, 209, 524–529 (2015).

9. A. Celma, J. V. Sancho, N. Salgueiro-Gonzalez, S. Castiglioni, E. Zuccato, F. Hernandez, L. Bijlsma, J. Chromatogr. A, 1602, 300–309 (2019).

10. M. Khoeini Sharifabadi, M. Saber-Tehrani, S. W. Husain, A. Mehdinia, P. Aberoomand-Azar, Sci. World J., 2014, 1–8 (2014).

11. B. Yao, L. Lian, W. Pang, D. Yin, S. A Chan, W. Song, Chemosphere, 160, 208–215 (2016).

12. E. Bakir, M. Gouda, A. Alnajjar, W. E. Boraie, Acta Pharm., 68, 243–250 (2018).

13. M. H. Jazayeri, T. Aghaie, A. Avan, A. Vatankhah, M. R. S. Ghaffari, Sens. Bio-Sens. Res., 20, 1–8 (2018).

14. M. Bahram, S. Alizadeh, Int. J. Biotech. Bioeng., 4, 21–32 (2018).

15. N. Xia, D. Deng, Y. Wang, C. Fang, S. Juan Li, Int. J. Nanomed., 13, 2521–2530 (2018).

16. M. Bahram, T. Madrakian, S. Alizadeh, J. Pharm. Anal., 7, 411–416 (2017).

17. A. Leovac Macerak, D. Kerkez, M. Becelic-Tomin, D. Tomasevic Pilipovic, A. Kulic, J. Jokic, B. Dalmacija, Proc. MDPI Publ., 2, 1288–1291 (2018).

18. M. Scheurer, F. Sacher, H. Jurgen Brauch, J. Environ. Monitor., 11, 1608–1613 (2009).

19. Y. Tao, B. Chen, B. H. Zhang, Z. J. Zhu, Q. Cai, Occur., Impact, Adv. Mar. Biol., 81, 23–58 (2018).

20. M. Scheurer, A. Michel, H. Jurgen Brauch, W. Ruck, F. Sacher, Water Res., 46, 4790–4802 (2012).

21. J. Turkevich, P. Cooper Stevenson, J. Hillier, Discuss. Faraday Soc., 11, 55–75 (1951).

22. N. Shahbazi, R. Zare-Dorabei, ACS Omega, 4, 17519–17526 (2019).

23. C. Senthil Kumar, M. D. Raja, D. Sathish Sundar, M. Gover Antoniraj, K. Ruckmani, Carbohydr. Polym., 128, 63–74 (2015).

24. J. N. Miller, J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 6th ed. (2010).

25. R. Q. Gabr, R. S. Padwal, D. R. Brocks, J. Pharm. Pharm. Sci., 13, 486–494 (2010).

26. A. M. Strugaru, J. Kazakova, E. Butnaru, I. C. Caba, M. Angel Bello-Lopez, R. Fernandez-Torres, J. Pharm. Biomed. Anal., 165, 276–283 (2019).

27. M. Tgk, J. Geethanjali, J. Chromatogr. Sep. Technol., 5, 252–259 (2014).


Review

For citations:


Moradi M., Sohrabi M.R., Mortazavinik S. SPECTROSCOPY DETERMINATION OF METFORMIN IN DRINKING WATER, TABLET, HUMAN SERUM, AND URINE BASED ON THE AGGREGATION OF NANOPARTICLES. Zhurnal Prikladnoii Spektroskopii. 2021;88(1):72-78.

Views: 341


ISSN 0514-7506 (Print)