Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Bactericide Components in Helium and Air Plasma Jets of a Dielectric Barrier Discharge

Abstract

A study of the component composition ofplasma jets generated by a dielectric barrier discharge in helium and air at atmospheric pressure was carried out by the methods of emission and absorption spectroscopy. The concentration of the main bactericidal component of the air plasma jet (ozone) was determined using both IR and UV absorption spectroscopy that increases the reliability of measurements. When studying an effect ofplasma jets on Staphylococcus aureus bacteria it was established that an air jet has a better inactivating effect compared to a helium one.

About the Authors

A. V. Kazak
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus


A. A. Kirillov
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus


L. V. Simonchik
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus


A. M. Vabishchevich
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus


M. M. Kuraica
University of Belgrade
Serbia

Belgrade, 11001



B. M. Obradovich
University of Belgrade
Serbia

Belgrade, 11001



G. B. Sretenovich
University of Belgrade
Serbia

Belgrade, 11001



A. I. Jabrouskaya
Republican Unitary Enterprise Scientific Practical Centre of Hygiene
Belarus

Minsk



O. A. Emeliyanova
Republican Unitary Enterprise Scientific Practical Centre of Hygiene
Belarus

Minsk



N. V. Dudchik
Republican Unitary Enterprise Scientific Practical Centre of Hygiene
Belarus

Minsk



References

1. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J. L. Zimmermann. New J. Phys., 11 (2009) 115012

2. A. Fridman, G. Friedman. Plasma Medicine, Wiley, New Delhi (2013)

3. M. Laroussi. Cambridge: Cambridge University Press (2012)

4. K. D. Weltmann, R. Brandenburg, T. von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, E. Kindel.

5. J. Phys. D: Appl. Phys., 41, N 19 (2008) 194008

6. R. Ono. J. Phys. D: Appl. Phys., 49 (2016) 34

7. I. Niedzwiedz, A. Wasko, J. Pawlat, M. Polak-Berecka. Polish J. Microbiol., 68, N 2 (2019) 153—164

8. G. B. Sretenovic, P. S. Iskrenovic, I. B. Krstic, V. V. Kovacevic, B. M. Obradovic, M. M. Kuraica. Plasma Sour. Sci. Technol., 27 (2018) 07LT01

9. A. Sobota, O. Guaitella, G. B. Sretenovic, I. B. Krstic, V. V. Kovacevic, A. Obrusnik, Y. N. Nguyen, L. Zajickova, B. M. Obradovic, M. M. Kuraica. Plasma Sour. Sci. Technol., 25 (2016) 065026

10. http://www.cfa.harvard.edu/HITRAN/

11. C. W. Allen. Astrophysical Quantities, The Athlone Press, London (1973)

12. L. T. Molina, M. J. Molina. J. Geophys. Res., 91 (1986) 14501—14508

13. M. Petersen, J. Viallon, P. Moussay, R. Wielgosz. J. Geophys. Res., 117 (2012) D05301

14. J. Viallon, S. Lee, P. Moussay, K. Tworek, M. Petersen, R. I. Wielgosz, Atm. Meas. Techn., 8 (2015) 1245—1257

15. N. V. Dudchik, S. I. Sychik, V. V. Shevlyakov. Theor. Appl. Ecol., 4 (2018) 5—12

16. J. Winter, R. Brandenburg, K.-D. Weltmann. Plasma Sour. Sci. Technol., 24 (2015) 064001

17. A. F. Al-rawaf, F. K. Fuliful, M. K. Khalaf, H. K. Oudah. J. Theor. Appl. Phys., 12 (2018) 45—51

18. K. Lotfy, S. M. Khalil, H. Abd El-Raheem. J. Theor. Appl. Phys., 14, N 1 (2020) 37—45

19. H. Xu, C. Chen, D. Liu, W. Wang, W. Xia, Z. Liu, L. Guo, M. G. Kong. Plasma Sci. Technol., 21 (2019)11

20. X. P. Lu, T. Ye, Y. G. Cao, Z. Y. Sun, Q. Xiong, Z. Y. Tang, Z. L. Xiong, J. Hu, Z. H. Jiang, Y. Pan. J. Appl. Phys., 104 (2008) 053309

21. G. Uchida, K. Takenaka, K. Kawabata, Y. Setsuhara. IEEE Transact. Plasma Sci., 43, N 3 (2015) 737—744

22. V. I. Arkhipenko, A. V. Kazak, A. A. Kirillov, L. V. Simonchik, V. V. Shkurko. High Temperature Mater. Proc., 22, N 4 (2018) 273—278

23. A. A. Kirillov, A. V. Paulava, Y. A. Safronau, L. V. Simonchik. Appl. Phys., 5 (2013) 52—55

24. A. V. Kazak, A. A. Kirillov, L. V. Simonchik, O. E. Nezhvinskaya, N. V. Dudchik. Plasma Med., 7, N 2 (2017) 109—115

25. U. Kogelschatz. Plasma Chem. Plasma Proc., 23 (2003) 1—46

26. M. A. Malik, K. H. Schoenbach, R. Heller. Chem. Eng. J., 15 (2014) 222—229

27. I. Timoshkin, M. Maclean, M. Wilson, M. Given, S. MacGregor, T. Wang, J. Anderson. IEEE Transact. Plasma Sci., 10 (2012) 2322—2333

28. L. Han, S. Patil, D. Boehm, V. Milosavljevic, P. J. Cullen, P. Bourke. Appl. Environ. Microbiol., 2 (2016) 450—458


Review

For citations:


Kazak A.V., Kirillov A.A., Simonchik L.V., Vabishchevich A.M., Kuraica M.M., Obradovich B.M., Sretenovich G.B., Jabrouskaya A.I., Emeliyanova O.A., Dudchik N.V. Bactericide Components in Helium and Air Plasma Jets of a Dielectric Barrier Discharge. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):231-236. (In Russ.)

Views: 215


ISSN 0514-7506 (Print)