Method for Estimation of Hydroxyl Concentration Behind the Reflected Shock Wave Front Using Broadband Radiation Source and Detector
Abstract
An absorption spectroscopy method is proposed for estimating hydroxyl concentration behind the reflected shock wave front without lasers and high-resolution spectrometers. The scheme of the method realization is shown, and the possibility of its usage in experiments with shock tubes is demonstrated. Temporal profiles of hydroxyl concentration are obtained in the induction period of self-ignition of a stoichiometric hydrogen-air mixture behind the reflected shock wave front.
About the Authors
N. S. MiatselskayaBelarus
Minsk, 220072
A. V. Skilandz
Belarus
Minsk, 220072
O. G. Penyazkov
Belarus
Minsk, 220072
A. I. Bril
Belarus
Minsk, 220072
References
1. Б. Е. Гельфанд, С. П. Медведев, А. Н. Поленов, С. В. Хомик, А. М. Бартенев. Физика горения и взрыва, 33, № 2 (1997) 3—10
2. Q. Xiong, A. Yu. Nikiforov, L. Li, P. Vanraes, N. Britun, R. Snyders, X. P. Lu, C. Leys. Eur. Phys. J. D, 66, N 11 (2012)281
3. M. Tanski, M. Kocika, B. Hrycak, D. Czylkowski, M. Jasinski, T. Kawasaki, S. Kanazawa. Spectro-chim. Acta A: Mol. Biomol. Spectrosc., 222 (2019) 117268
4. R. Ono, T. Oda. J. Phys D: Appl. Phys., 35, N 17 (2002) 2133—2138
5. F. Tochikubo, S. Uchida, T. Watanabe. Jpn. J. Appl. Phys., 43, N 1 (2004) 315—320
6. X. Pei, S. Wu, Y. Xian, X. Lu, Y. Pan. IEEE Transact. Plasma Sci., 42, N 5 (2014) 1206—1210
7. S. Yonemori, Y. Nakagawa, R. Ono, T. Oda. J. Phys. D Appl. Phys., 45 (2012) 225202
8. Б. Ф. Бояршинов, С. Ю. Федоров. Физика горения и взрыва, 40, № 5 (2004) 16—20
9. T. Verreycken, N. Sadeghi, P. J. Bruggeman. Plasma Sour. Sci. Technol., 23, N 4 (2014) 45005(1—9)
10. G. Dilecce, S. De Benedictis. Plasma Phys. Control. Fusion, 53 (2011) 124006
11. G. Dilecce, L. M. Martini, P. Tosi, M. Scotoni, S. De Benedictis. Plasma Sour. Sci. Technol., 24 (2015) 34007
12. A. Nikiforov, L. Li, N. Britun, R. Snyders, P. Vanraes, C. Leys. Plasma Sour. Sci. Technol., 23, N 1 (2014)15015
13. G. Dilecce, P. F. Ambrico, M. Simek, S. De Benedictis. J. Phys. D: Appl. Phys., 45 (2012) 125203
14. D. Li, A. Nikiforov, N. Britun, R. Snyders, M. G. Kong, C. Leys. J. Phys. D: Appl. Phys., 49, N 45 (2016) 455202
15. C. A. Fuh, S. M. Clark, W. Wu, C. Wang. J. Appl. Phys., 120 (2016) 163303
16. C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare. Plasma Sour. Sci. Technol., 12 (2003) 125—138
17. A. Sarani, A. Yu. Nikiforov, C. Leys. Phys. Plasm., 17 (2010) 063504
18. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke. Appl. Phys. B, 107 (2012) 571—584
19. S. S. Vasu, D. F. Davidson, R. K. Hanson. Comb. Flame, 156, N 4 (2009) 736—749
20. J. T. Herbon, R. K. Hanson, D. M. Golden, C. T. Bowman. Proc. Comb. Institute, 29, N 1 (2002) 1201—1208
21. M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge. Proc. Comb. Institute, 29 (2002) 2635—2643
22. Z. Hong, R. D. Cook, D. F. Davidson, R. K. Hanson. J. Phys. Chem. A, 114, N 18 (2010) 5718—5727
23. D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson. Proc. Comb. Institute, 30 (2005) 2799—2807
24. V. Vasudevan, D. F. Davidson, R. K. Hanson. Int. J. Chem. Kinetics, 37, N 2 (2005) 98—109
25. L. White, M. Gamba. AIAA SciTech Forum (2017) 0387
26. Y. J. Hong, C. J. Nam, K. B. Song, G. S. Cho, H. S. Uhm, D. I. Choi, E. H. Choi. J. Instrum., 7 (2012) C03046
27. Q. Xiong, Z. Yang, P. J. Bruggeman. J. Phys. D: Appl. Phys., 48, N 42 (2015) 424008
28. P. Bruggeman, G. Cunge, N. Sadeghi. Plasma Sour. Sci. Technol., 21, N 3 (2012) 035019
29. С. А. Лосев, А. И. Осипов. Успехи физ. наук, 74, № 3 (1961) 393—434
30. М. А. Ельяшевич. Атомная и молекулярная спектроскопия, Москва, Физматлит (1962)
31. The HITRAN Database, https://hitran.org/
32. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Mas-sie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Van der Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. J. Quant. Spectrosc. Rad. Transf., 203 (2017) 3—69
33. C. D. Rodgers. Inverse Methods for Atmospheric Sounding. Theory and Practice, Word Scientific (2000)
Review
For citations:
Miatselskaya N.S., Skilandz A.V., Penyazkov O.G., Bril A.I. Method for Estimation of Hydroxyl Concentration Behind the Reflected Shock Wave Front Using Broadband Radiation Source and Detector. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):237-243. (In Russ.)