Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Method for Estimation of Hydroxyl Concentration Behind the Reflected Shock Wave Front Using Broadband Radiation Source and Detector

Abstract

An absorption spectroscopy method is proposed for estimating hydroxyl concentration behind the reflected shock wave front without lasers and high-resolution spectrometers. The scheme of the method realization is shown, and the possibility of its usage in experiments with shock tubes is demonstrated. Temporal profiles of hydroxyl concentration are obtained in the induction period of self-ignition of a stoichiometric hydrogen-air mixture behind the reflected shock wave front.

About the Authors

N. S. Miatselskaya
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus

Minsk, 220072



A. V. Skilandz
Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus
Belarus

Minsk, 220072



O. G. Penyazkov
Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus
Belarus

Minsk, 220072



A. I. Bril
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Belarus

Minsk, 220072



References

1. Б. Е. Гельфанд, С. П. Медведев, А. Н. Поленов, С. В. Хомик, А. М. Бартенев. Физика горения и взрыва, 33, № 2 (1997) 3—10

2. Q. Xiong, A. Yu. Nikiforov, L. Li, P. Vanraes, N. Britun, R. Snyders, X. P. Lu, C. Leys. Eur. Phys. J. D, 66, N 11 (2012)281

3. M. Tanski, M. Kocika, B. Hrycak, D. Czylkowski, M. Jasinski, T. Kawasaki, S. Kanazawa. Spectro-chim. Acta A: Mol. Biomol. Spectrosc., 222 (2019) 117268

4. R. Ono, T. Oda. J. Phys D: Appl. Phys., 35, N 17 (2002) 2133—2138

5. F. Tochikubo, S. Uchida, T. Watanabe. Jpn. J. Appl. Phys., 43, N 1 (2004) 315—320

6. X. Pei, S. Wu, Y. Xian, X. Lu, Y. Pan. IEEE Transact. Plasma Sci., 42, N 5 (2014) 1206—1210

7. S. Yonemori, Y. Nakagawa, R. Ono, T. Oda. J. Phys. D Appl. Phys., 45 (2012) 225202

8. Б. Ф. Бояршинов, С. Ю. Федоров. Физика горения и взрыва, 40, № 5 (2004) 16—20

9. T. Verreycken, N. Sadeghi, P. J. Bruggeman. Plasma Sour. Sci. Technol., 23, N 4 (2014) 45005(1—9)

10. G. Dilecce, S. De Benedictis. Plasma Phys. Control. Fusion, 53 (2011) 124006

11. G. Dilecce, L. M. Martini, P. Tosi, M. Scotoni, S. De Benedictis. Plasma Sour. Sci. Technol., 24 (2015) 34007

12. A. Nikiforov, L. Li, N. Britun, R. Snyders, P. Vanraes, C. Leys. Plasma Sour. Sci. Technol., 23, N 1 (2014)15015

13. G. Dilecce, P. F. Ambrico, M. Simek, S. De Benedictis. J. Phys. D: Appl. Phys., 45 (2012) 125203

14. D. Li, A. Nikiforov, N. Britun, R. Snyders, M. G. Kong, C. Leys. J. Phys. D: Appl. Phys., 49, N 45 (2016) 455202

15. C. A. Fuh, S. M. Clark, W. Wu, C. Wang. J. Appl. Phys., 120 (2016) 163303

16. C. O. Laux, T. G. Spence, C. H. Kruger, R. N. Zare. Plasma Sour. Sci. Technol., 12 (2003) 125—138

17. A. Sarani, A. Yu. Nikiforov, C. Leys. Phys. Plasm., 17 (2010) 063504

18. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke. Appl. Phys. B, 107 (2012) 571—584

19. S. S. Vasu, D. F. Davidson, R. K. Hanson. Comb. Flame, 156, N 4 (2009) 736—749

20. J. T. Herbon, R. K. Hanson, D. M. Golden, C. T. Bowman. Proc. Comb. Institute, 29, N 1 (2002) 1201—1208

21. M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, M. S. Wooldridge. Proc. Comb. Institute, 29 (2002) 2635—2643

22. Z. Hong, R. D. Cook, D. F. Davidson, R. K. Hanson. J. Phys. Chem. A, 114, N 18 (2010) 5718—5727

23. D. W. Mattison, M. A. Oehlschlaeger, C. I. Morris, Z. C. Owens, E. A. Barbour, J. B. Jeffries, R. K. Hanson. Proc. Comb. Institute, 30 (2005) 2799—2807

24. V. Vasudevan, D. F. Davidson, R. K. Hanson. Int. J. Chem. Kinetics, 37, N 2 (2005) 98—109

25. L. White, M. Gamba. AIAA SciTech Forum (2017) 0387

26. Y. J. Hong, C. J. Nam, K. B. Song, G. S. Cho, H. S. Uhm, D. I. Choi, E. H. Choi. J. Instrum., 7 (2012) C03046

27. Q. Xiong, Z. Yang, P. J. Bruggeman. J. Phys. D: Appl. Phys., 48, N 42 (2015) 424008

28. P. Bruggeman, G. Cunge, N. Sadeghi. Plasma Sour. Sci. Technol., 21, N 3 (2012) 035019

29. С. А. Лосев, А. И. Осипов. Успехи физ. наук, 74, № 3 (1961) 393—434

30. М. А. Ельяшевич. Атомная и молекулярная спектроскопия, Москва, Физматлит (1962)

31. The HITRAN Database, https://hitran.org/

32. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Mas-sie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Van der Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. J. Quant. Spectrosc. Rad. Transf., 203 (2017) 3—69

33. C. D. Rodgers. Inverse Methods for Atmospheric Sounding. Theory and Practice, Word Scientific (2000)


Review

For citations:


Miatselskaya N.S., Skilandz A.V., Penyazkov O.G., Bril A.I. Method for Estimation of Hydroxyl Concentration Behind the Reflected Shock Wave Front Using Broadband Radiation Source and Detector. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):237-243. (In Russ.)

Views: 169


ISSN 0514-7506 (Print)