Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Speciation of Chromium Compounds from ZSM-5 into an Ionic Liquid

Abstract

The speciation of extracted chromium from ZSM-5 into an ionic liquid (IL) was studied using X-ray absorption near-edge structure (XANES) spectroscopy. The main adsorbed chromium species in ZSM-5 were Cr(VI)-HA (Cr(VI) chelated with humic acids (HAs)) (57%), Cr(VI)ads (Cr(VI) adsorbed on ZSM-5) (33%), and Cr(III)-HA (Cr(III) chelated with HA) (10%). In this work, l-butyl-3-methylimidazolium chloride ([C4mim]Cl), was used as the IL to extract the chromium compounds from ZSM-5. Experimentally, approximately 75% of the chromium compounds were extracted within 30 min at 343 K. Combining the chromium extraction efficiency and component fitting results of the XANES spectra, almost all of Cr(VI)-HA was extracted into [C4mim]Cl. Following extraction, 34.5% of the Cr(VI) compounds were reduced to form Cr(III)-HA and Cr(III) ions. The Cr-O bond distance of Cr compounds was 1.69 A in [C4mim]Cl as shown by X-ray absorption fine structure (EXAFS) spectroscopy. 1H nuclear magnetic resonance (NMR) showed that the reduction and extraction of Cr(VI) compounds were affected by [C4mim]+. The non-extractable chromium species in ZSM-5 were Cr(VI)ads (9%), Cr(III)-HA (10.8%), and Cr(III)ads (5.2%). The fraction of Cr(VI) was decreased greatly because of the use of [C4mim]Cl as the extractant.

About the Authors

H. L. Huang
National United University
Taiwan, Province of China

Department of Safety, Health and Environmental Engineering.

Miao-Li 36063, Taiwan



Y. J. Wei
National United University
Taiwan, Province of China

Department of Safety, Health and Environmental Engineering.

Miao-Li 36063, Taiwan



References

1. U. Farooq, J. A. Kozinski, M. A. Khan, M. Athar, Bioresour. Technol, 101, 5043 (2010).

2. B. Dhal, H. N. Thatoi, N. N. Das, B. D. Pandey, J. Hazard. Mater., 250, 272-291 (2013).

3. G. Choppala, N. Bolan, J. H. Park, Adv. Agron., 120, 129-172 (2013).

4. W. T. Cefalu, F. B. Hu, Diabetes, 27, 2741-2751 (2004).

5. A. K. Shanker, C. Cervantes, H. Loza-Tavera, S. Avudainayagam, Environ. Int, 31, 739-753 (2005).

6. M. Costa, C. B. Klein, Crit. Rev. Toxicol., 36, 155-163 (2006).

7. A. Corma, Chem. Rev, 27, 431-442 (1997).

8. V. L. Colin, L. B. Villegas, C. M. Abate, Int. Biodeter. Biodegrad., 69, 28-37 (2012).

9. Z. Liu, Y. Wu, C. Lei, P. Liu, M. Gao, World J. Microbiol, 28, 1585-1592 (2012).

10. H. L. Huang, Y. J. Wei, Chemosphere, 194, 390-395 (2018).

11. A. Tytlak, P. Oleszczuk, R. Dobrowolski, Environ. Sci. Pollut. Res, 22, 5985-5994 (2015).

12. C. Rosales-Landeros, C. E. Barrera-Diaz, B. Bilyeu, V. V. Guerrero, F. U. Nhnez, Am. J. Anal. Chem, 4, 8-16 (2013).

13. N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev, 37, 123-150 (2008).

14. M. J. Earle, K. R. Seddon, Pure Appl. Chem, 72, 1391-1398 (2000).

15. H. Zhao, S. Xia, P. Ma, J. Chem. Technol. Biotechnol., 80, 1089-1096 (2005).

16. A. Stojanovic, B. K. Keppler, Sep. Sci. Technol., 47, 189-203 (2012).

17. H. L. Huang, J. Mol. Liq, 230, 24-27 (2017).

18. H. L. Huang, H. H. Huang, Y. J. Wei, Spectrosc. Acta B, Atom. Spectrosc, 133, 9-13 (2017).

19. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 208, 117-120 (1995).

20. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B, 52, 2995-3009 (1995).

21. T Resslert, X. A. S. Win, J. Synchrotron. Rad, 5, 118-122 (1998).

22. D. Koningsberger, B. Mojet, J. Miller, D. E. Ramaker, J. Synchrotron. Rad., 6, 135-141 (1999).

23. T. Yamamoto, X-Ray Spectrum, 37, 572-584 (2008).

24. V. R. Elias, E. V. Sabre, E. L. Winkler, L. Andrini, F. G. Requejo, S. G. Casuscelli, G. A. Eimer, J. Solid State Chem, 213, 229-234 (2014).


Review

For citations:


Huang H.L., Wei Y.J. Speciation of Chromium Compounds from ZSM-5 into an Ionic Liquid. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):270-274.

Views: 248


ISSN 0514-7506 (Print)