The Sum Decomposition Method for the Gaussian Functions Comprising the Experimental Photoluminescence Spectrum
Abstract
We propose a method of the sum decomposition for Gaussian functions which allows expanding of the experimental photoluminescence spectrum into individual Gaussian emission bands. The decomposition process is carried out on the basis of a single experimental measurement. Meanwhile, the calculation of the Gaussian parameters (amplitude, maximum location, and half-width of the spectrum) is performed using three experimental points. The method was tested in the analysis of the photoluminescence spectra of ZnS:Mn crystals where individual emission bands were revealed by the proposed method as well as by the Alentsev-Fock and derivative spectroscopy methods.
About the Authors
A. V. KovalenkoUkraine
Dnipro, 49000
S. M. Vovk
Ukraine
Dnipro, 49000
Ye. G. Plakhtii
Ukraine
Dnipro, 49000
References
1. Z. Wang, H. Zeng, L. Sun. J. Mater. Chem. C, 6 (2015) 1157—1165, https://doi.org/10.1039/C4TC02536A
2. D. A. Skoog, F. J. Holler, S. R. Crouch. Principles of Instrumental Analysis, Cengage learning, USA (2017)
3. K. Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang. Chem. Rev., 118 (2018) 1770—1839, https://doi.org/10.1021/acs.chemrev.7b00425
4. L. V. Bel’Skaya. J. Appl. Spectr., 86 (2019) 187—205, https://doi.org/10.1007/s10812-019-00800-w
5. M. V. Fock. Lumin. Linear Opt. (Russ.), 59 (1972) 3—24
6. A. A. Nekrasov, V. F. Ivanov, A. V. Vannikov. Electrochim. Acta, 46 (2001) 4051—4056, https://doi.org/10.1016/S0013-4686(01)00693-4
7. M. M. Slyotov, O. S. Gavaleshko, O. V. Kinzerska. J. Nano Electron. Phys., 9 (2017) 5046(1—3), https://doi.org/10.21272/jnep.9(5).05046
8. A. V. Kovalenko, E. G. Plakhtiy, S. M. Vovk. Ukr. J. Phys. Opt. 19 (2018) 133—140, https://doi.org/10.3116/16091833/19/2/133/2018
9. G. Talsky. Derivative Spectroscopy: Low and Higher Order, VCH Publishers, Wiley (1994)
10. OriginPro 9.1. OriginLab Corporation, One Roundhouse Plaza, suite 303, Northampton, MA 37 01060, USA 1800-969-7720
11. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)
12. P. Adamek, O. Renner, L. Drska, F. B. Rosmej, J. F. Wyart. Laser Part. Beams, 24 (2006) 511—518, https://doi.org/10.1017/S0263034606060678
13. J. A. Nelder, R. A. Mead. Comput. J., 7 (1965) 308—313, https://doi.org/10.1093/comjnl/7.4.308
14. S. A. Burikov, T. A. Dolenko, I. S. Kurchatov, S. V. Patsaeva, Y. V. Starokurov. Russ. Phys. J., 55 (2012) 383—388, https://doi.org/10.1007/s11182-012-9823-4
15. D. W. Marquardt. J. Soc. Ind. and Appl. Math., 11 (1963) 431—441, https://doi.org/10.1137/0111030
16. B. Zhang, H. Yu, L. Sun, Y. Xin, Z. Cong. Appl. Spectrosc., 67 (2013) 1087—1097, https://doi.org/10.1366/12-06822
17. J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch, D. G. Cameron. Appl. Spectrosc., 35 (1981) 271—276, https://doi.org/10.1366/0003702814732634
18. V. S. Sizikov, A. V. Lavrov. Opt. Spectrosc., 124 (2018) 753—762, https://doi.org/10.1134/S0030400X1806022X
19. T. H. Yang, H. Y. Huang, C. C. Sun, B. Glorieux, X.-H. Lee, Y.-W. Yu, T.-Y. Chung. Sci. Rep., 8 (2018) 2916—2923, https://doi.org/10.1038/s41598-017-18686-z
20. T. A. Prokofiev, A. V. Ivanchenko, V. V. Gnatushenko. J. Appl. Spectr., 86 (2019) 213—219, https://doi.org/10.1007/s10812-019-00802-8
21. O. V. Kovalenko, S. M. Vovk, Ye. G. Plakhtii. J. Phys. Electron., 26 (2018) 73—80, https://doi.org/10.15421/331828
22. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola. Springer Science & Business Media, 328 (2013)
23. A. V. Kovalenko, S. M. Vovk, Ye. G. Plakhtii. Funct. Mater., 27 (2020) 424—433, https://doi.org/10.15407/fm27.02.424
Review
For citations:
Kovalenko A.V., Vovk S.M., Plakhtii Ye.G. The Sum Decomposition Method for the Gaussian Functions Comprising the Experimental Photoluminescence Spectrum. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):297-302. (In Russ.)