Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optical Nanobiosensing of Stibogluconate in Plasma and Urine Using Green Synthesized Fluorescent Carbon Nanodots

Abstract

Fluorescent carbon nanodots were synthetized from garlic peels as optical nanobiosensors for an anti-leishmaniotic stibogluconate drug. The characterization techniques for the synthetized carbon nanodots confirmed its thermal stability, nanosize in the range 2—14 nm, amorphous nature, and the presence of C—O functional groups. The optical sensor, based on the fluorescent nature of carbon nanodots, was developed for the drug nanobiosensor in dosage form and in human biological fluids. The drug was digested to release a pentavalent antimony cation that quenches the fluorescence intensity of carbon nanodots. The extraction method was performed through ion pairing with trinonylamine. The optical sensing was extended to the in vivo analysis of stibogluconate in real human plasma. The sensing of stibogluconate was found to be linear over the range 0.01-0.10 µg/mL with percentage recoveries of 99.25±1.86, and 99.624±1.33 in vials with spiked plasma and in spiked urine.

About the Authors

W. Talaat
Damanhour University
Egypt

Damanhour 25111



A. F. Hassan
Damanhour University
Egypt

Damanhour 25111



References

1. W. Chan, J. Mazwell, X. Gao, E. Baily, M. Han, S. Nie, Curr. Opinion Biotechnol., 13, No. 1, 40-46 (2002).

2. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev, 44, 362-381 (2015).

3. T. T. Dang, V. Mai, Q. Le, N. Duong, Xuan-Dung, Chem. Phys, 527, 110503-110508 (2019).

4. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, P. Cook, L. G. Samuel, C. Hwang, G. Ruan, G. Ceriotti, O. Raji, A. Marti, M. Tour, Nature Commun., 4, 29-34 (2013).

5. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. Tsang, X. Yang, S. Lee, Angew. Chem. Int. Ed, 49, 4430-4434 (2010).

6. Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, J. Meziani, A. Harruff, X. Wang, H. Wang, G. Luo, H. Yang, E. Kose, B. Chen, L. Veca, S. Xie, J. Am. Chem. Soc, 128, 7756-7757 (2006).

7. Y. Liu, C. Liu, Z. Zhang, J. Colloid Interface Sci., 356, 416-421 (2011).

8. Z. Anwei, Q. Qiang, S. Xiangling, K. Biao, T. Yang, Angew. Chem. Int. Ed., 51, 7185-7191 (2012).

9. C. G. Joaquim, S. Esteves, M. R. Helena, A. Gonc, Trends Anal. Chem, 30, 1327-1336 (2011).

10. H. Li, Y. Zhang, L. Wang, J. Tian, X. Sun, Chem. Commun., 47, 961-963 (2011).

11. A. Cayuela, S. M. Laura, M. Valcarcel, Anal. Chim. Acta, 804, 246-251 (2013).

12. W. Kong, H. Wu, Z. Ye, R. Li, T. Xu, B. Zhang, J. Lumin, 148, 238-242 (2014).

13. https://en.wikipedia.org/wiki/Sodium_stibogluconate#Mechanism_of_action. Accessed on 1st Jan. 2019.

14. British Pharmacopoeia Commission. British Pharmacopoeia 2016, London, TSO (2016).

15. M. S. Bloomfield, A. D. Dow, K. A. Prebble, J. Pharm. Biomed. Anal., 10, 779-7783 (1992).

16. M. M. S. Junior, L. A. Portugal, A. M. Serra, L. Ferrer, V. Cerda, S. L. C. Ferreira, Talanta, 165, 502-507(2017).

17. I. Lopez-Garcia, R. E. Rivas, M. Hernandez-Cordoba, Talanta, 86, 52-57(2011).

18. L. A. Trivelin, J. J. R. Rohwedder, S. Rath, Talanta, 68, 1536-1543 (2006)

19. Z. Li, Y. Guo, Talanta, 65, 1318-1325 (2005).

20. F. Shakerian, S. Dadfarnia, A. M. H. Shabani, M. N. A. Abadi, Food Chem., 145, 571-577 (2014).

21. K. Zarei, M. Atabati, M. Karami, J. Hazard. Mater., 179, 840-844 (2010).

22. H. Gaber, B. Rosana, A. Josefa, G. Marta, Beilstein J. Nanotechnol., 7, 758-766 (2016).

23. I. Inci, Chem. Biochem. Eng. Q, 16, No. 4, 81-85 (2002).

24. M. Ashmi, P. Sunil, Th. Mukeshchand, J. Dhanashree, Sh. Madhuri, J. Mater. Chem. B, 2, 698-705 (2014) .

25. O. Emil, A. Zhypargul, I. Chihiro, I. Hirotaka, U. Saadat, M. Tsutomu, J. Nanosci. Nanotechnol, 15, 3703-3709 (2015).

26. F. Suarez-Garcia, A. Martinez-Alonso, J. M. Diez Tascon, J. Anal. Appl. Pyrol., 63, 283-301 (2002).

27. B. De, N. Karak, RSC Adv, 3, 8286 (2013).

28. P. Tathagata, M. Shanid, P. Gopinath, ACS Omega, 3, 831-843 (2018).

29. J. Liang, J. Wanga, K. Yu, K. Song, X. Wang, W. Liu, J. Hou, C. Liang, Chem. Phys., 528, 110538-110544 (2020).

30. L. Mukesh, M. Abou Talib, Kh. Shahnawaz, P. Sunil, W. Hui-Fen, Microchim. Acta, 182, 2173-2181 (2015).

31. S. Ashutosh, G. Stephen, Introduction to Fluorescence Spectroscopy, Wiley, ISBN 978-0-471-11098-9 (1999).

32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New York (1999).

33. P. Atkins, J. de Paula, Atkins' Physical Chemistry, 9th ed, OUP Oxford (2010).

34. X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Chem. Commun, 48, 7955-7957 (2012).

35. G. Gu, C. Chen, Q. Wang, Z. Gao, M. Xu, J. Appl. Spectrosc, 86, No. 4, 618-622 (2019).

36. M. Kazusaki, S. Ueda, N. Takeuchi, Y. Ohgami, Chromatography, 33, No. 2, 65-73 (2012).

37. J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, 4th ed., Ellis-Howood, New York (1993).


Review

For citations:


Talaat W., Hassan A.F. Optical Nanobiosensing of Stibogluconate in Plasma and Urine Using Green Synthesized Fluorescent Carbon Nanodots. Zhurnal Prikladnoii Spektroskopii. 2021;88(2):333(1)-333(13).

Views: 199


ISSN 0514-7506 (Print)