A nonclinical spectroscopic approach for diagnosing covid-19: a concise perspective
Abstract
With the COVID-19 outbreak, many challenges are posed before the scientific world to curb this pandemic. The diagnostic testing, treatment, and vaccine development for this infection caught the scientific community's immediate attention. Currently, despite the global proliferation of COVID-19 vaccination, the specific treatment for this disease is yet unknown. Meanwhile, COVID-19 detection or diagnosis using polymerase chain reaction (PCR)-based methods is expensive and less reliable. Moreover, this technique needs much time to furnish the results. Thus, the elaboration of a highly sensitive and fast method of COVID-19 diagnostics is of great importance. The spectroscopic approach is herein suggested as an efficient detection methodology for COVID-19 diagnosis, particularly Raman spectroscopy, infrared spectroscopy, and mass spectrometry.
About the Authors
J. M. MirIndia
Awantipora, J&K, India-192122
Jabalpur-MP
M. W. Khan
India
Jabalpur-MP
A. H. Shalla
India
Awantipora, J&K, India-192122
R. C. Maurya
India
Jabalpur-MP
References
1. M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, R. Siddique, J. Adv. Res., 24, 91–98 (2020).
2. Y. Zhu, C. Wang, L. Dong, M. Xiao, Brain. Behav. Immunol., 87, 142–143 (2020).
3. B. Russell, C. Moss, A. Rigg, M. Van Hemelrijck, Ecancer Med. Sci., 14, 1023 (2020).
4. P. Little, BMJ, 368, 1185 (2020).
5. B. Russell, C. Moss, G. George, A. Santaolalla, A. Cope, S. Papa, M. Van Hemelrijck, Ecancer Med. Sci., 14, 1022 (2020).
6. J. Gao, Z. Tian, X. Yang, Biosci. Trends, 14, 72–73 (2020).
7. A. Savarino, J. R. Boelaert, A. Cassone, G. Majori, R. Cauda, Lancet Infect. Dis., 3, 722–727 (2003).
8. Y. Yan, Z. Zou, Y. Sun, X. Li, K. F. Xu, Y. Wei, N. Jin, C. Jiang, Cell Res., 23, 300–302 (2013).
9. A. Sternberg, D. L. McKee, C. Naujokat, Curr. Top. Med. Chem., 20, 1423–1433 (2020).
10. L. L. Ferreira, A. D. Andricopulo, Curr. Top. Med. Chem., 20, 1577–1580 (2020).
11. W. Liu, H. L. Zhu, Y. Duan, Curr. Top. Med. Chem., 20, 603–605 (2020).
12. C. M. Chu, V. C. C. Cheng, I. F. N. Hung, M. M. L. Wong, K. H. Chan, K. S. Chan, R. Y. T. Kao, L. L. M. Poon, C. L. P. Wong, Y. Guan, J. S. M. Peiris, K. Y. Yuen, Thorax, 59, 252–256 (2004).
13. R. S. Khan, I. U. Rehman, Expert Rev. Mol. Diagn., 20, 647–649 (2020).
14. K. Wu, R. Saha, D. Su, V. D. Krishna, J. Liu, M. C. Cheeran, J. P. Wang, arXiv preprint arXiv:2007.04809 2020, arXiv preprint arXiv:2007.04809.
15. S. Mahapatra, P. Chandra, Biosens. Bioelectron., 165, 112361 (2020).
16. C. Jenkins, B. Orsburn, BioRxiv (2020), https://doi.org/10.1101/2020.03.08.980383.
17. L. F. D. C. de Silva, M. S. N. de Carvalho, Photodiagn. Photodyn. Ther., 30, 101765 (2020).
18. G. Seo, G. Lee, M. J. Kim, S. H. Baek, M. Choi, K. B. Ku, C. S. Lee, S. Jun, D. Park, H. G. Kim, S. J. Kim, J. O. Lee, B. T. Kim, E. C. Park, S. J. Kim, ACS Nano, 14, 5135–5142 (2020).
19. I. Mahmud, T. J. Garrett, J. Am. Soc. Mass Spectrom., 31, 2013–2024 (2020).
20. C. Sheridan, Nat. Biotechnol., 38, 382–384 (2020).
21. B. A. Taha, Y. Al Mashhadany, M. H. Hafiz Mokhtar, M. S. Dzulkefly Bin Zan, N. Arsad, Sensors, 20, 6764 (2020).
22. J. M. Mir, N. Jain, P. S. Jaget, R. C. Maurya, Photodiagn. Photodyn. Ther., 19, 363–374 (2017).
23. J. M. Mir, N. Jain, P. S. Jaget, W. Khan, P. K. Vishwakarma, D. K. Rajak, B. A. Malik, R. C. Maurya, J. King Saud Univ. – Sci., 31, 89–100 (2019).
24. J.M. Mir, R.C. Maurya, J. Chin. Adv. Mater. Soc., 6, 434–458 (2018).
25. J. M. Mir, B. A. Malik, R. C. Maurya, Rev. Inorg. Chem., 39, 91–112 (2019).
26. J. M. Mir, R. C. Maurya, Rev. Inorg. Chem., 38, 193–220 (2018).
27. R. C. Maurya, J. M. Mir, In: Advances in Metallodrugs: Preparation and Applications in Medicinal Chemistry, Wiley, New Jersey, 157–201 (2020).
28. J. M. Mir, R. C. Maurya, Annal. Ophthalmol. Visual Sci., 1003, 1–4 (2018).
29. R. C. Maurya, J. M. Mir, Int. J. Sci. Eng. Res., 5, 305–320 (2014).
30. J. M. Mir, S. A. Majid, A. H. Shalla, Rev. Inorg. Chem., 3493 (2021), doi.org/10.1515/revic-2020-0020.
31. J. M. Mir, R. C. Maurya, New J. Chem., 45, 1774–1784 (2021).
32. J. M. Mir, R. C. Maurya, J. Biomol. Struct. Dyn. (2020), doi.org/10.1080/07391102.2020.1852969. A NONCLINICAL SPECTROSCO
33. A. D. Whetton, G. W. Preston, S. Abubeker, N. Geifman, J. Proteome Res., 19, No. 11, 4219–4232 (2020).
34. R. Singh, P. Su, L. Kimerling, A. Agarwal, B. W. Anthony, Appl. Phys. Lett., 113, No. 23, 231107 (2018), doi: arXiv:1806.06910v2.
35. P. Chandra, Sensors Int., 1, 100019 (2020), doi.org/10.1016/j.sintl.2020.100019.
36. M. S. Nogueira, Photodiagn. Photodyn. Ther., 31, 101892 (2020).
37. N. Rabiee, M. Bagherzadeh, A. Ghasemi, H. Zare, S. Ahmadi, Y. Fatahi, R. Dinarvand, M. Rabiee, S. Ramakrishna, M. R. Shokouhimehr, R. S. Varma, Int. J. Mol. Sci., 21, 5126 (2020), doi.org/10.3390/ijms21145126.
38. M. S. Nogueira, Photodiagn. Photodyn. Ther., 31, 101823 (2020).
39. S. Pahlow, S. Meisel, D. Cialla-May, K. Weber, P. Rösch, J. Popp, Adv. Drug Deliv. Rev., 89, 105–120 (2015).
40. L. Jacobi, V. H. Damle, B. Rajeswaran, Y. R. Tischler, Roy. Soc. Open Sci., 7, 1–28 (2020).
41. S. L. Manoto, A. El-Hussein, R. Malabi, L. Thobakgale, S. Ombinda-Lemboumba, Y. A. Attia, M. A. Kasem, P. Mthunzi-Kufa, Saudi J. Biol. Sci., 28, 78–89 (2021).
42. V. Deckert, T. Deckert-Gaudig, D. Cialla, J. Popp, R. Zell, A. V. Sokolov, Z. Yi, M. O. Scully, Med. Phys. (2020), doi: arXiv:2003.07951.
43. A. M. Elsharif, Int. J. Res. App. Sci. Eng. Technol., 8, 715–719 (2020).
44. M. H. Jazayeri, H. Amani, A. A. Pourfatollah, H. Pazoki-Toroudi, B. Sedighimoghaddam, Sens. BioSens. Res., 9, 17–22 (2016).
45. V. X. T. Zhao, T. I. Wong, X. T. Zheng, Y. N. Tan, X. Zhou, Mater. Sci. Energy Technol., 3, 237–249 (2020).
46. F. L. Martin, J. G. Kelly, V. Llabjani, P. L. Martin-Hirsch, I. I. Patel, J. Trevisan, N. J. Fullwood, M. J. Walsh, Nat. Protoc., 5, 1748–1760 (2010).
47. J. G. Kelly, J. Trevisan, A. D. Scott, P. L. Carmichael, H. M. Pollock, P. L. Martin-Hirsch, F. L. Martin, J. Proteome Res., 10, 1437–1448 (2011).
48. W. McIntyre, R. Netzband, G. Bonenfant, J. M. Biegel, C. Miller, G. Fuchs, E. Henderson, M. Arra, M. Canki, D. Fabris, C.T. Pager, Nucleic Acids Res., 46, 5776–5791 (2018).
49. M. C. Santos, C. L. Morais, K. M. Lima, Biomed. Spectrosc. Imag., 9, 103–118 (2020).
50. F. M. Nachtigall, A. Pereira, O. S. Trofymchuk, L. S. Santos, Nat. Biotechnol., 38, 1168–1173 (2020).
51. J. A. SoRelle, K. Patel, L. Filkins, J. Y. Park, Clin. Chem., 66, 1367–1368 (2020).
52. V. S. Raj, M. M. Lamers, S. L. Smits, J. A. Demmers, H. Mou, B. J. Bosch, B. L. Haagmans, In: Coronaviruses, Humana Press, New York, 165–182 (2015).
53. A. M. Zaki, S. Van Boheemen, T. M. Bestebroer, A. D. Osterhaus, R. A. Fouchier, N. Engl. J. Med., 367, 1814–1820 (2012).
54. W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, Nature, 426, 450–454 (2003).
55. D. Gouveia, G. Miotello, F. Gallais, J. C. Gaillard, S. Debroas, L. Bellanger, J. P. Lavigne, A. Sotto, L. Greng, O. P. J. Armengaud, J. Proteome Res., 19, 4407–4416 (2020).
Review
For citations:
Mir J.M., Khan M.W., Shalla A.H., Maurya R.C. A nonclinical spectroscopic approach for diagnosing covid-19: a concise perspective. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):587-593.