Chemical transformations of flax shive lignin under the impact of fermentation products of polysaccharides
Abstract
The actual problems of using flax production waste for obtaining products which are necessary to produce cosmetics with sunscreen and antioxidant properties were studied. Preparations were obtained of ethanolignin from flax shives and raw materials that have subjected to alkaline pulping or biochemical modification. The bio-processing included the stage of enzymatic degradation of non-cellulosic polysaccharides with the generation of aldoses and stage of isothermal aging at 95о С. Chemical transformations in the polymer were studied by Fourier-transform infrared spectroscopy (FTIR) with the decomposition of spectral curve into elementary vibration bands in the main atomic groups. The analysis of the spectra was carried out using the C-C stretching vibrations in the aromatic ring at 1510 сm–1 as the internal standard. In spectra of hydrolyzed lignin an increase of absorption oxyaryl groups is combined with an increase in the band intensity of valence and deformation vibrations of C=C bond in alkene fragments. The enhancement of the auxochromic effect in double bonds adjoin to the aromatic ring is manifested as the increase of absorption in the nearultraviolet and visible light ranges. The biochemical preparation of the raw material provides the disappearance of the bands double bond in the carbonyl and alkene groups in the IR spectra. It is accompanied by strengthening in the absorption bands of alkyl hydroxyls by 1.5–2 times and hydroxyl group in the oxyaryl units by 3—4 times. The results are consistent with the data of analysis of biomodified preparation by the differential UV spectroscopy method and testify strengthening of photostabilizing ability of lignin in a combination with absolute transparency in the visible range.
About the Authors
S. V. AleevaRussian Federation
Ivanovo
O. V. Lepilova
Russian Federation
Ivanovo
S. A. Koksharov
Russian Federation
Ivanovo
References
1. M. V. Galkin, J. S. Samec. ChemSusChem., 9, N 13 (2016) 1544—1558, doi: 10.1002/cssc.201600237
2. W. Schutyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, B. F. Sels. Chem. Soc. Rev., 47, N 3 (2018) 852—908, doi: 10.1039/c7cs00566k
3. T. I. Korányi, B. Fridrich, A. Pineda, K. Barta. Molecules, 25, N 12 (2020) 2815, doi: 10.3390/molecules25122815
4. L. Cao, I. K. M. Yu, Y. Liu, X. Ruan, D. C. W. Tsang, A. J. Hunt, Y. S. Ok, H. Song, S. Zhang. Bioresours Technol., 269 (2018) 465—475, doi: 10.1016/j.biortech.2018.08.065
5. S. S. Wong, R. Shu, J. Zhang, H. Liu, N. Yan. Chem Soc Rev., 49, N 15 (2020) 5510—5560, doi: 10.1039/d0cs00134a
6. R. Zhang, C. H. Zhao, H. C. Chang, M. Z. Chai, B. Z. Li, Y. J. Yuan. Eng Life Sci., 19, N 6 (2019) 463—470, doi: 10.1002/elsc.201800133
7. X. Liang, Q. Hu, X. Wang, L. Li, Y. Dong, C. Sun, C. Hu, X. Gu. Polymers, 12, N 9 (2020) 2123, doi: 10.3390/polym12092123
8. S. Nikafshar, J. Wang, K. Dunne, P. Sangthonganotai, M. Nejad. ChemSusChem., 14 (2021) 1—13, doi: 10.1002/cssc.202002729
9. Q. Tang, Y. Qian, D. Yang, X. Qiu, Y. Qin, M. Zhou. Polymers, 12, N 11 (2020) 2471, doi: 10.3390/polym12112471
10. T. J. Szalaty, Łi. Klapiszewsk, T. Jesionowski. J. Mol. Liq., 301 (2020) 112417, doi: 10.1016/j.molliq.2019.112417
11. H. Li, Y. Deng, J. Liang, Y. Dai, B. Li, Y. Ren, X. Qiu, C. Li. BioResources, 11 (2016) 3073—3083, doi: 10.15376/biores.11.2.3073-3083
12. M. P. Vinardell, M. Mityans. Int. J. Mol. Sci., 18 (2017) 1219, doi: 10.3390/ijms18061219
13. P. Morganti, M.-B. Coltelli. Cosmetics, 6, N 1 (2019) 10, doi: 10.3390/cosmetics6010010
14. V. Martinez, M. Mitjans, M. P. Binardell. Curr. Organ. Chem., 16 (2012) 1863—1870, doi: 10.2174/138527212802651223
15. C. Corinaldesi, F. Marcellini, E. Nepote, E. Damiani, R. Danovaro. Sci. Total Environ. (2018) 637—638, 1279–1285, doi: 10.1016/j.scitotenv.2018.05.108
16. L. Ouchene, I. V. Litvinov, E. Netchiporouk. J. Cutan. Med. Surg., 23 (2019) 648—649, doi: 10.1177/1203475419871592
17. A. Levine. Mar. Policy., 117 (2020) 103875, doi: 10.1016/j.marpol.2020.103875
18. O. Gordobil, P. Olaizola, J. M. Banales, J. Labidi. Molecules, 25, N 5 (2020) 1131, doi: 10.3390/molecules25051131
19. H. He, A. Li, S. Li, J. Tang, L. Li, L. Xiong. Biomed. Pharmac., 134 (2021) 111161, doi: 10.1016/j.biopha.2020.111161
20. D. Piccinino, E. Capecchi, E. Tomaino, S. Gabellone, V. Gigli, D. Avitabile, R. Saladino. Antioxidants, 10, N 2 (2021) 274, doi: 10.3390/antiox10020274
21. M. E. Vallejos, F. E. Felissia, A. A. S. Curvelo, M. D. Zambon, L. Ramos, M. C. Area. Bioresources, 6, N 2 (2011) 1158—1171, doi: 10.15376/biores.6.2.1158-1171
22. S. Laurichesse, L. Averous. Prog. Polym. Sci., 39, N 7 (2014) 1266—1290, doi: 10.1016/j.progpolymsci.2013.11.004
23. Y. Qian, X. Q. Qiu, S. P. Zhu. Green Chem., 17, N 1 (2015) 320—324, doi: 10.1039/C4GC01333F
24. A. Duval, M. Lawoko. React. Funct. Polym., 85 (2014) 78—96, doi: 10.1016/j.reactfunctpolym.2014.09.017
25. S. R. Yearla, K. Padmasree. J. Exp. Nanosci., 10 N 18 (2015) 1—14, doi: 10.1080/17458080.2015.1055842
26. D. Tian, J. Hu, J. Bao, R. P. Chandra, J. N. Saddler, C. Lu. Biotechnol. Biofuels, 10 (2017) 192, doi: 10.1186/s13068-017-0876-z
27. J. Wang, Y. Deng, Y. Qian, X. Qiu, Y. Ren, D. Yang. Green Chem., 18 (2016) 695—699, doi: 10.1039/C5GC02180D
28. H. Zhang, X. Liu, S. Fu, Y Chen. Int. J. Biol. Macromol., 133 (2019) 86—92, doi: 10.1016/j.ijbiomac.2019.04.092
29. S. C. Lee, T. M. T. Tran, J. W. Choi, K. Won. Int. J. Biol. Macromol., 122 (2019) 549—554; doi: 10.1016/j.ijbiomac.2018.10.184
30. О. Lepilova, G. Spigno, S. Aleeva, S. Koksharov. Eurasian Chem. Technol. J., 19, N 1 (2017) 31—40, doi: 10.18321/ectj500
31. О. В. Лепилова, С. В. Алеева, С. А. Кокшаров. ЖОрХ, 48, № 1 (2012) 88—93 [O. V. Lepilova, S. V. Aleeva, S. A. Koksharov. Russ. J. Org. Chem., 48 N 1 (2012) 83—88], doi: 10.1134/S1070428012010125
32. S. Koksharov, S. Aleeva, O. Lepilova. Autex Res. J., 15, N 3 (2015) 215—225; doi: 10.1515/aut2015-0003
33. W. J. J. Huijgen, A. T. Smit, P. J. de Wild, H. den Uil. BioResours Technol., 114 (2012) 389—398, doi: 10.1016/j.biortech.2012.02.143
34. С. В. Алеева, С. А. Кокшаров. Рос. хим. журн., 55, № 3 (2011) 46—58 [S. V. Aleeva, S. A. Koksharov. Russ. J. Gen. Chem., 82, N 13 (2012) 2279—2293], doi: 10.1134/S1070363212130154
35. E. Pretsch, Ph. Buhlmann, M. Badertscher. Structure Determination of Organic Compounds, Berlin, Springer-Verlag Berlin Heidelberg (2009).
36. Методы исследования древесины и ее производных, под ред. Н. Г. Базарновой, Барнаул, АГУ (2002)
37. О. Ю. Деркаj (2013) 670—676], doi: 10.1007/s10812-013-9825-1
38. С. В. Алеева, О. В. Лепилова, С. А. Кокшаров. Журн. прикл. спектр., 87, № 5 (2020) 694—699 [S. V. Aleeva, O. V. Lepilova, S. A. Koksharov. J. Appl. Spectr., 87, N 5 (2020) 779—783], doi: 10.31857/S0044453720060035
39. M. Khazma, A. Goullieux, R.M. Dheilly, A. Rougier, M. Queneudec. Ind. Crop. Prod., 61 (2014) 442—452, doi: 10.1016/j.indcrop.2014.07.041
Review
For citations:
Aleeva S.V., Lepilova O.V., Koksharov S.A. Chemical transformations of flax shive lignin under the impact of fermentation products of polysaccharides. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):603-610. (In Russ.)