Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Assessing PM2.5, aerosol, and aerosol optical depth concentrations in hefei using MODIS, CALIPSO, and ground-based lidar

Abstract

Due to the complications in the measurement of fine particulate matter (PM2.5), this paper proposes a method using lidar for assessing PM2.5. By calculating the aerosol optical depth (AOD) for MODIS, CALIPSO, and ground-based lidar, the corrected PM2.5 was predicted. The results showed that AOD and PM2.5 had a linear relationship. The linear correlation coefficient between ground-based lidar AOD and PM2.5 was 0.81, and the root mean square error (RMSE) and mean deviation (MD) were 24.43 and 18.41, respectively. The linear correlation coefficient between CALIPSO AOD and PM2.5 was 0.8, and its RMSE and MD were 42.91 and 33.25, respectively. The linear correlation between AOD and PM2.5 for VIIRS was approximately 0.7. This paper provides more possibilities for lidar observation and prediction of the environment

About the Authors

Zh. Fang
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



H. Yang
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



M. Zhao
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei, 230037



Y. Cao
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



Ch. Li
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



K. Xing
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei, 230037



X. Deng
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



Ch. Xie
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Science Island Branch of Graduate School at University of Science and Technology of China; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei 230026

Hefei, 230037



D. Liu
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics at Chinese Academy of Sciences; Advanced Laser Technology Laboratory of Anhui Province
China

Hefei 230031

Hefei, 230037



References

1. C. K. Chan, X. Yao, Environment, 42, 1–42 (2008).

2. D. W. Dockery, C. A. Pope III, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., F. E. Speizer, N. Engl. J. Med., 329, 1753–1759 (1993).

3. B. R. Gurjar, A. Jain, A. Sharma, A. Agarwal, P. Gupta, A. S. Nagpure, J. Lelieveld, Atm. Environ., 44, 4606–4613 (2010).

4. WHO, Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease (2016).

5. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, et al., Science, 294, No. 5549, 2119–2124 (2001).

6. Z. Pan, F. Mao, W. Gong, Q. Min, W. Wang, Remote Sens. Environ., 198, 363–368 (2017).

7. WHO, Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. World Health Organization (2013).

8. M. Vallius, Characteristics and Sources of Fine Particulate Matter in Urban Air, National Public Health Institute (2005).

9. Y. Choi, Y. Ghim, B. Holben, Atm. Chem. Phys. Discuss., 26627–26656 (2013).

10. D. A. Chu, Y. Kaufman, G. Zibordi, J. Chern, J. Mao, C. Li, B. Holben, Geophys. Res.: Atm., 108 (2003).

11. P. Gupta, S. A. Christopher, J. Wang, R. Gehrig, Y. Lee, N. Kumar, Atm. Environ., 40, 5880–5892 (2006).

12. A. Savtchenko, D. Ouzounov, S. Ahmad, J. Acker, G. Leptoukh, J. Koziana, D. Nickless, Terra and Aqua MODIS products available from NASA GES (2004).

13. http://dx.doi.org/10.1016/j.asr.2004.03.012.

14. X. Yap, M. Hashim, Atm. Chem. Phys. Discuss., 12 (2012).

15. Y. Chu, Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, M. Ren, Atmosphere, 7, 129 (2016).

16. K. Ashish, S. Narendra, S. R. Anshumali, Remote Sens. Environ., 206, 139–155 (2018).

17. C. Cao, F. J. De Luccia, X. Xiong, R. Wolfe, F. Weng, Remote Sens., 52, 1142–1156 (2014).

18. H. Liu, L. A. Remer, J. Huang, H.-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, J. M. Jackson, Res. Atm., 119, 3942–3962 (2014).

19. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, S. A. Young, Atm. Measur., 26, No. 11, 2310–2323 (2009).

20. D. M. Winker, et al., Am. Meteorol. Soc., 91, N 9, 1211–1229 (2010).

21. J. Chimot, J. P. Veefkind, T. Vlemmix, P. F. Levelt, Atm. Measur. Tech., 11, 2257–2277 (2018).

22. F. G. Fernald, Opt. Appl., 23, No. 5, 652 (1984).

23. J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, T. Takamura, Geophys. Res., 107, D15, 4252–4259 (2002).

24. D. C. Wu, Lidar Measurement of Atmospheric Aerosols and Water Vapor, Hefei Institute of Physical Science, Chinese Academy of Sciences (2011).

25. B. M. Liu, Y. Y. Ma, Y. F. Shi, Y. B. Jin, W. Gong, Atm. Res., 241, 104959 (2020).

26. T.-C. Tsai, Y.-J. Jeng, D. A. Chu, J.-P. Chen, S.-C. Chang, Atm. Environ., 45, 4777–4788 (2011).

27. R. R. Draxler, G. D. Hess, Aust. Metorol. Mag., 47, 295–308 (1998).

28. A. A. Chudnovsky, P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, Y. Wang, J. Schwartz, Atm. Environ., 89, 189–198 (2014).

29. O. N. Seyed, H. Leopold, A. Esmail, Atm. Pollut. Res., 10, 889–903 (2019).

30. H. Liu, L. A. Remer, J. H.-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, J. M. Jackson, Geophys. Res. Atm., 119, 3942–3962 (2014).


Review

For citations:


Fang Zh., Yang H., Zhao M., Cao Y., Li Ch., Xing K., Deng X., Xie Ch., Liu D. Assessing PM2.5, aerosol, and aerosol optical depth concentrations in hefei using MODIS, CALIPSO, and ground-based lidar. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):616-623.

Views: 245


ISSN 0514-7506 (Print)