![Open Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/opened.png)
![Restricted Access](https://zhps.ejournal.by/lib/pkp/templates/images/icons/closed.png)
Assessing PM2.5, aerosol, and aerosol optical depth concentrations in hefei using MODIS, CALIPSO, and ground-based lidar
Abstract
Due to the complications in the measurement of fine particulate matter (PM2.5), this paper proposes a method using lidar for assessing PM2.5. By calculating the aerosol optical depth (AOD) for MODIS, CALIPSO, and ground-based lidar, the corrected PM2.5 was predicted. The results showed that AOD and PM2.5 had a linear relationship. The linear correlation coefficient between ground-based lidar AOD and PM2.5 was 0.81, and the root mean square error (RMSE) and mean deviation (MD) were 24.43 and 18.41, respectively. The linear correlation coefficient between CALIPSO AOD and PM2.5 was 0.8, and its RMSE and MD were 42.91 and 33.25, respectively. The linear correlation between AOD and PM2.5 for VIIRS was approximately 0.7. This paper provides more possibilities for lidar observation and prediction of the environment
About the Authors
Zh. FangChina
Hefei 230031
Hefei 230026
Hefei, 230037
H. Yang
China
Hefei 230031
Hefei 230026
Hefei, 230037
M. Zhao
China
Hefei 230031
Hefei, 230037
Y. Cao
China
Hefei 230031
Hefei 230026
Hefei, 230037
Ch. Li
China
Hefei 230031
Hefei 230026
Hefei, 230037
K. Xing
China
Hefei 230031
Hefei, 230037
X. Deng
China
Hefei 230031
Hefei 230026
Hefei, 230037
Ch. Xie
China
Hefei 230031
Hefei 230026
Hefei, 230037
D. Liu
China
Hefei 230031
Hefei, 230037
References
1. C. K. Chan, X. Yao, Environment, 42, 1–42 (2008).
2. D. W. Dockery, C. A. Pope III, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., F. E. Speizer, N. Engl. J. Med., 329, 1753–1759 (1993).
3. B. R. Gurjar, A. Jain, A. Sharma, A. Agarwal, P. Gupta, A. S. Nagpure, J. Lelieveld, Atm. Environ., 44, 4606–4613 (2010).
4. WHO, Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease (2016).
5. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, et al., Science, 294, No. 5549, 2119–2124 (2001).
6. Z. Pan, F. Mao, W. Gong, Q. Min, W. Wang, Remote Sens. Environ., 198, 363–368 (2017).
7. WHO, Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. World Health Organization (2013).
8. M. Vallius, Characteristics and Sources of Fine Particulate Matter in Urban Air, National Public Health Institute (2005).
9. Y. Choi, Y. Ghim, B. Holben, Atm. Chem. Phys. Discuss., 26627–26656 (2013).
10. D. A. Chu, Y. Kaufman, G. Zibordi, J. Chern, J. Mao, C. Li, B. Holben, Geophys. Res.: Atm., 108 (2003).
11. P. Gupta, S. A. Christopher, J. Wang, R. Gehrig, Y. Lee, N. Kumar, Atm. Environ., 40, 5880–5892 (2006).
12. A. Savtchenko, D. Ouzounov, S. Ahmad, J. Acker, G. Leptoukh, J. Koziana, D. Nickless, Terra and Aqua MODIS products available from NASA GES (2004).
13. http://dx.doi.org/10.1016/j.asr.2004.03.012.
14. X. Yap, M. Hashim, Atm. Chem. Phys. Discuss., 12 (2012).
15. Y. Chu, Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, M. Ren, Atmosphere, 7, 129 (2016).
16. K. Ashish, S. Narendra, S. R. Anshumali, Remote Sens. Environ., 206, 139–155 (2018).
17. C. Cao, F. J. De Luccia, X. Xiong, R. Wolfe, F. Weng, Remote Sens., 52, 1142–1156 (2014).
18. H. Liu, L. A. Remer, J. Huang, H.-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, J. M. Jackson, Res. Atm., 119, 3942–3962 (2014).
19. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, S. A. Young, Atm. Measur., 26, No. 11, 2310–2323 (2009).
20. D. M. Winker, et al., Am. Meteorol. Soc., 91, N 9, 1211–1229 (2010).
21. J. Chimot, J. P. Veefkind, T. Vlemmix, P. F. Levelt, Atm. Measur. Tech., 11, 2257–2277 (2018).
22. F. G. Fernald, Opt. Appl., 23, No. 5, 652 (1984).
23. J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, T. Takamura, Geophys. Res., 107, D15, 4252–4259 (2002).
24. D. C. Wu, Lidar Measurement of Atmospheric Aerosols and Water Vapor, Hefei Institute of Physical Science, Chinese Academy of Sciences (2011).
25. B. M. Liu, Y. Y. Ma, Y. F. Shi, Y. B. Jin, W. Gong, Atm. Res., 241, 104959 (2020).
26. T.-C. Tsai, Y.-J. Jeng, D. A. Chu, J.-P. Chen, S.-C. Chang, Atm. Environ., 45, 4777–4788 (2011).
27. R. R. Draxler, G. D. Hess, Aust. Metorol. Mag., 47, 295–308 (1998).
28. A. A. Chudnovsky, P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, Y. Wang, J. Schwartz, Atm. Environ., 89, 189–198 (2014).
29. O. N. Seyed, H. Leopold, A. Esmail, Atm. Pollut. Res., 10, 889–903 (2019).
30. H. Liu, L. A. Remer, J. H.-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, J. M. Jackson, Geophys. Res. Atm., 119, 3942–3962 (2014).
Review
For citations:
Fang Zh., Yang H., Zhao M., Cao Y., Li Ch., Xing K., Deng X., Xie Ch., Liu D. Assessing PM2.5, aerosol, and aerosol optical depth concentrations in hefei using MODIS, CALIPSO, and ground-based lidar. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):616-623.