Thermal and spectroscopic studies of the thermal-oxidation stabilities of lubricants
Abstract
The influence of aromatic antioxidants 2,6-di-tert-butyl-4-methylphenol (BHT) and diphenylamine (DPA) on the thermal–oxidative degradation of base oils 150N was studied by using the hot oil oxidation test (HOOT) with temperatures varying from 100 to 200o C and times ranging from 1–24 h. Qualitative as well as quantitative analyses of the base oils and their fractions were done using gas chromatography-mass spectrometry (GC-MS) and spectroscopic (FTIR, UV–visible) techniques to gain a better understanding of their compositional and structural details. Oxidization processes were also studied and structural changes resulting from thermal oxidation were identified. The results indicate that the addition of antioxidants causes an obvious enhancement in the resistance of base oils to thermal–oxidative degradation. Moreover, the mixture of antioxidants shows better thermal–oxidative resistance than the phenolic or diphenylamine antioxidants alone.
About the Authors
P. WangChina
Xuzhou 221004
Y. Wang
China
Xuzhou 221004
Y. Sun
China
Xuzhou 221004
Z. Cao
China
Xuzhou 221004
W. Zhu
China
Xuzhou 221004
H. Wang
China
Xuzhou 221116
References
1. L. R. Rudnick, Lubricant Additives Chemistry and Applications, 2nd ed., Taylor & Francis Group (2009).
2. J. M. Herdan, Lubric. Sci., 9, No. 2, 161–172 (1997).
3. X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, Lubric. Sci., 9, No. 1, 3–60 (1996).
4. M. A. Keller, C. S. Saba, Anal. Chem., 68, 3489–3492 (1996).
5. K. U. Ingold, D. A. Pratt, Chem. Rev., 114, No. 18, 9022–9046 (2014).
6. A. Adhvaryu, S. Z. Erhan, I. D. Singh, Lubric. Sci., 14, No. 2, 119–129 (2002).
7. V. J. Gatto, W. E. Moehle, T. W. Cobb, E. R. Schneller, J. Synth. Lubric., 24, No. 2, 111–124 (2007).
8. G. Kreisberger, C. W. Klampfl, W. W. Buchberger, Energy Fuels, 30, No. 9, 7638–7645 (2016).
9. A. Mustafa, J. J. Verendel, C. Turner, P. Wiklund, Ind. Eng. Chem. Res., 53, No. 49, 19028–19033 (2014).
10. M. Bernabei, G. B. R. Seclı, J. Microcolumn Sep., 12, No. 11, 585–592 (2000).
11. Y. Jin, H. Duan, L. Wei, B. Cheng, S. Chen, S. Zhan, J. Li, Lubric. Sci., 31, No. 6, 252–261 (2019).
12. I. Ahmad, J. Ullah, M. Ishaq, H. Khan, R. Khan, W. Ahmad, K. Gul, Energy Fuels, 31, No. 7, 7653–7661 (2017).
13. M. del Nogal Sanchez, P. Glanzer, J. L. Perez Pavon, C. Garcia Pinto, B. Moreno Cordero, Anal. Bioanal. Chem., 398, No. 7-8, 3215–3224 (2010).
14. X. Qian, Y. Xiang, H. Shang, B. Cheng, S. Zhan, J. Li, Friction, 4, No. 1, 29–38 (2016).
15. C. Miao, D. Yu, L. Huang, S. Zhang, L. Yu, P. Zhang, Ind. Eng. Chem. Res., 55, No. 7, 1819–1826 (2016).
16. L. Huang, C. Zhou, Y. Zhang, S. Zhang, P. Zhang, Langmuir: the ACS J. Surfaces and Colloids, 35, No. 12, 4342–4352 (2019).
17. M. Frauscher, A. Agocs, C. Besser, A. Rögner, G. Allmaier, N. Dörr, Energy Fuels, 34, No. 3, 2674–2682 (2020).
18. S. Yu, J. Feng, T. Cai, S. Liu, Ind. Eng. Chem. Res., 56, No. 14, 4196–4204 (2017).
19. A. Singh, R.T. Gandra, E.W. Schneider, S. K. Biswas, J. Phys. Chem. C, 117, No. 4, 1735–1747 (2013).
20. J. Feng, H. Zhao, S. Yue, S. Liu, ACS Sustain. Chem. Eng., 5, No. 4, 3399–3408 (2017).
21. M. A. D.S.Rios, S.N.Santiago, A. A.L. S.Lopes, S.E.Mazzetto,Energy Fuels, 24, No. 5, 3285–3291 (2010).
22. J. Barret, P. Gijsman, J. Swagten, R. F. M. Lange, Polym. Degrad. Stab., 76, 441–448 (2002).
23. F. Bär, H. Hopf, M. Knorr, J. Krahl, Fuel, 215, 249–257 (2018).
24. R. P. Caramit, A. G. de Freitas Andrade, J. B. Gomes de Souza, T. A. de Araujo, L. H. Viana, M. A. G. Trindade, V. S. Ferreira, Fuel, 105, 306–313 (2013).
25. J.Chýlková, O.Machalický, M.Tomášková, R. Šelešovská, T. Navrátil,Anal. Lett., 49, No. 1, 92–106 (2015).
26. S. Kerkering, W. Koch, J. T. Andersson, Energy Fuels, 29, No.2, 793–799 (2015).
27. E. V. Frantsina, A. A. Grinko, N. I. Krivtsova, M. V. Maylin, A. A. Sycheva, Pet. Sci. Technol., 38, No. 4, 338–344 (2019).
28. J. C. O. Santos, I. M. G. d. Santos, A. G. Souza, E. V. Sobrinho, V. J. Fernandes, A. J. N. Silva, Fuel, 83, No. 17-18, 2393–2399 (2004).
29. M. Chao, W. Li, X. Wang, Thermochim. Acta, 591, 16–21 (2014).
30. D. Li, W. Fang, Y. Xing, Y. Guo, R. Lin, Fuel, 87, No. 15-16, 3286–3291 (2008).
31. G. Geethanjali, K. V. Padmaja, R. B. N. Prasad, Ind. Eng. Chem. Res., 55, No. 34, 9109–9117 (2016).
32. Y. Gong, L. Guan, X. Feng, J. Zhou, X. Xu, L. Wang, Energy Fuels, 31, 2501–2512 (2017).
33. J. Ma, Y. Fei, N. Wu, S. Sun, Y. Wang, Asia–Pac. J. Chem. Eng., 14, No. 1, 2273–2289 (2018).
34. R. e. L. Webster, D. J. Evans, P. J. Marriott, Energy Fuels, 29, 2059–2066 (2015).
35. M. Antolovich, D. R. B. Jr, A. G. Bishop, D. Jardine, P. D. Prenzler, K. Robards, J. Agric. Food Chem., 52, 962–971 (2004).
36. D.W. Johnson, Applications of Mass Spectrometric Techniques to the Analysis of Fuels and Lubricants, IntechOpen Groups (2017).
37. T. N. Loegel, R. E. Morris, K. M. Myers, C. J. Katilie, Energy Fuels, 28, No. 10, 6267–6274 (2014).
Review
For citations:
Wang P., Wang Y., Sun Y., Cao Z., Zhu W., Wang H. Thermal and spectroscopic studies of the thermal-oxidation stabilities of lubricants. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):662-669.