Raman and x-ray absorption spectroscopy investigations of the structure and Ru-Mn valence states of Li2Mn0.9Ru0.1O3
Abstract
We report the effect of the sintering temperature on the structure and valence states of Ru-Mn in Li2Mn0.9Ru0.1O3. These effects are explored by synchrotron X-ray diffraction patterns, Raman and X-ray absorption spectroscopy spectra (analysis of the Ru-M4, Mn-L2,3, and O-K edges). Ru doping at the Mn site in Li2MnO3 changes the lattice parameters of the parent Li2MnO3. Li2Mn0.9Ru0.1O3 sintered at 950o C shows two peaks of the Ru-M4 absorption edge. These peaks confirm the presence of mixed valence states Ru+4 and Ru+5 . The compound Li2Mn0.9Ru0.1O3 sintered at 1050o C shows only one peak of the Ru-M4 absorption edge, which reveals the presence of the Ru+4 valence state. The Mn-L3 absorption edge of Li2Mn0.9Ru0.1O3 shifts towards lower energy in comparison to the absorption edge of Li2MnO3. The O-K absorption edge of Li2Mn0.9Ru0.1O3 shows the origin of a new peak in comparison to the absorption edge of Li2MnO3 due to the presence of Mn+3 – O hybridization in Li2Mn0.9Ru0.1O3 sintered at 950o C. The Raman spectrum of Li2Mn0.9Ru0.1O3 shows splitting and peak shifting with the change in the sintering conditions. The presence of mixed valences Mn+3, Mn+4 , Ru+4 , and Ru+5 in the lattice of Li2Mn0.9Ru0.1O3 sintered at 950o C may affect the charge–discharge properties of the Li2Mn0.9Ru0.1O3 cathode.
Keywords
About the Authors
B. SinghIndia
Prayagraj-211002
P. Singh
India
Prayagraj-211002
M. Gupta
India
University Campus, Indore-452017
References
1. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem., 21, 9938–9954 (2011).
2. B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater., 22, 691–714 (2010).
3. K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science, 311, 977–980 (2006).
4. M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, J. M. Tarascon, Chem. Mater., 25, 1121–1131 (2013).
5. S. S. Manoharan, R. K. Sahu, Chem. Commun. (Cambridge), 3068–3069 (2002), doi: 10.1039/B209293
6. Y. Lyu, E. Hu, D. Xiao, Y. Wang, X. Yu, G. Xu, S. N. Ehrlich, K. Amine, L. Gu, X. Yang, H. Li, Chem. Mater., 29, 9053–9065 (2017).
7. M. Sathiya, J.-B. Leriche, E. Salager, D. Gourier, J.-M. Tarascon, H. Vezin, Nat. Commun., 6, 6276 (2015).
8. D. Mori, H. Kobayashi, T. Okumura, H. Nitani, M. Ogawa, Y. Inaguma, Solid State Ion., 285, 66–74 (2016).
9. B. Singh, S. S. Manoharan, M. L. Rao, S. P. Pai, Phys. Chem. Chem. Phys., 6, 4199–4202 (2004).
10. B. Singh, Phys. Chem. Chem. Phys., 18, 12947–12951 (2016).
11. M. V. Reddy, S. S. Manoharan, J. John, B. Singh, G. V. S. Rao, B. V. R. Chowdari, J. Electrochem. Soc., 156, A652–A660 (2009).
12. J. G. Zhou, H. T. Fang, Y. F. Hu, T. K. Sham, C. X. Wu, M. Liu, F. Li, J. Phys. Chem. C, 113, 10747–10750 (2009).
13. T. Harano, G. Shibata, K. Ishigami, Y. Takashashi, V. K. Verma, Appl. Phys. Lett., 102, 222404 (1–4) (2013).
14. B. Singh, P. Singh, SN Appl. Sci., 2, 506 (2020).
15. R. E. Ruther, H. Dixit, A. M. Pezeshki, R. L. Sacci, V. R. Cooper, J. Nanda, G. M. Veith, J. Phys. Chem. C, 119, 18022–18029 (2015).
16. C. M. Julien, M. Massot, Mater. Sci. Eng. B, 100, 69–78 (2003).
17. S. F. Amalraj, D. Sharon, M. Talianker, C. M. Julien, L. Burkala, R. Lavi, E. Zhecheva, B. Markovsky, E. Zinigrad, D. Kovacheva, Electrochim. Acta, 97, 259–270 (2013).
18. Z. Hu, H. V. Lips, M. S. Golden, J. Fink, G. Kaindl, F. M. F. deGroot, S. Ebbinghaus, A. Reller, Phys. Rev. B, 61, 5262–5266 (2000).
19. A. S. Patra, G. Gogoi, R. K. Sahu, M. Qureshi, Phys. Chem. Chem. Phys., 19, 12167–12174 (2017).
Review
For citations:
Singh B., Singh P., Gupta M. Raman and x-ray absorption spectroscopy investigations of the structure and Ru-Mn valence states of Li2Mn0.9Ru0.1O3. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):664-671.