Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Microstructure and red luminescence of ZnO nanoparticles/nanofibers synthesized by electrospinning followed by thermal annealing

Abstract

This paper reports the red visible luminescence of ZnO nanofibers synthesized by electrospinning followed by thermal annealing. The ZnO nanofibers were prepared by electrospinning of the precursor mixture of zinc acetate/polyvinylpyrrolidone (PVP) by using different PVP concentrations, while thermal annealing was kept at 600°C. The ZnO nanofiber diameter was dependent on the PVP concentrations, which increased as PVP concentrations increased. Thermal annealing induced significant changes in ZnO nanofibers, which formed ZnO nanoparticle/nanofiber structures as a function of PVP concentrations. The ZnO nanofibers synthesized with PVP concentration of 20% induced homogeneous distribution of ZnO nanoparticles with highly visible luminescence intensities centering at ~650 nm. Results indicated that the use of electrospinning followed by thermal annealing could be an important method for the synthesis of ZnO nanoparticle/nanofiber structures, which could be used in advanced engineering such as optoelectronics and sensing. 

About the Authors

P. V. Huan
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST)
Viet Nam

Hanoi



N. D. Thong
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST); School of Engineering Physics at Hanoi University of Science and Technology (HUST)
Viet Nam

Hanoi



V. T. P. Thuy
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST); Trade Union University
Viet Nam

Hanoi



L. V. Toan
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST); Le Quy Don Technical University
Viet Nam

Hanoi



N. D. T. Kien
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST)
Viet Nam

Hanoi



T. Q. Tuan
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST)
Viet Nam

Hanoi



V.-H. Pham
Advanced Institute for Science and Technology (AIST) at Hanoi University of Science and Technology (HUST)
Viet Nam

Hanoi



References

1. Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater., 13, 9–24 (2013).

2. J. Lian, Z. Ding, F. L. Kwong, D. H. L. Ng, Cryst. Eng. Commun., 13, 4820–4822 (2011).

3. Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, Chem. Commun., 10, 712–713 (2004).

4. M. McCune, W. Zhang, Y. Deng, Nano Lett., 12, 3656–3662 (2012).

5. D. Yuvaraj, K. Narasimha Rao, K. Barai, Solid State Commun., 149, 349–351 (2009).

6. W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, Z. Ren, Adv. Mater., 18, 3275–3278 (2006).

7. V. H. Pham, V. T. Kien, P. D. Tam, P. T. Huy, Mater. Sci. Eng: B, 209, 17–22 (2016).

8. S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, J. B. Ketterson, Appl. Phys. Lett., 75, 2761 (1999).

9. A. Umar, B. K. Kim, J. J. Kim, Y. B. Hahn, Nanotechnology, 18, 175606 (2007).

10. S. S. Warule, N. S. Chaudhari, B. B. Kale, M. A. More, Cryst. Eng. Comm., 11, 2776–2783 (2009).

11. V. Kumar, V. Kumar, S. Som, A. Yousif, N. Singh, O. M. Ntwaeaborwa, A. Kapoor, H. C. Swart, J. Colloid Interf. Sci., 428, 8–15 (2014).

12. H. Q. Wang, G. Z. Wang, L. C. Jia, C. J. Tang, G. H. Li, J. Phys. D: Appl. Phys., 40, 6549–6553 (2007).

13. D. Y. Jiang, J. X. Zhao, M. Zhao, Q. C. Liang, S. Gao, J. M. Qin, Y. J. Zhao, A. Li, J. Alloys Compd., 532, 31–33 (2012).

14. D. H. Fan, W. Z. Shen, M. J. Zheng, Y. F. Zhu, J. J. Lu, J. Phys. Chem. C, 111, 9116–9121 (2007).

15. R. Raji, K.G. Gopchandran, J. Sci.: Adv. Mater. Devic., 2, 51–58 (2017).

16. A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, Appl. Phys. Lett., 88, 103107 (2006).

17. M. Kitsara, O. Agbulut, D. Kontziampasis, Y. Chen, P. Menasché, Acta Biomater., 48, 20–40 (2017).

18. Travis J. Sill, Horst A. von Recum, Biomaterials, 29, 1989–2006 (2008).

19. C. Lai, X. Wang, Y. Zhao, H. Fong, Z. Zhu, RSC Adv., 3, 6640–6645 (2013).

20. E. Ghafari, Y. Feng, Y. Liu, I. Ferguson, N. Lu, Composites Part B, 116, 40–45 (2017).

21. H. Wu, W. Pan, J. Am. Ceram. Soc., 89, 699–701 (2006).

22. J. Y. Park, S. S. Kim, J. Am. Ceram. Soc., 92, 1691–1694 (2009).

23. D. Y. Lj2008).

24. A. Baez-Rodríguez, L. Zamora-Peredo, M. G. Soriano-Rosales, J. Hernandez-Torres, L. GarcíaGonzález, R. M. Calderón-Olvera, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, J. Lumin., 218, 116830 (2020).

25. J. Zhou, K. Nomenyo, C. C. Cesar, A. Lusson, A. Schwartzberg, C. C. Yen, W. Y. Woon, G. Leronde, Sci. Rep., 10, 4237 (2020).

26. Y. Kumar, A. K. Rana, P. Bhojane, M.Pusty, V. Bagwe, S. Sen, P. M. Shirage, Mater. Res. Express, 2, 105017 (2015).


Review

For citations:


Huan P.V., Thong N.D., Thuy V.T., Toan L.V., Kien N.D., Tuan T.Q., Pham V. Microstructure and red luminescence of ZnO nanoparticles/nanofibers synthesized by electrospinning followed by thermal annealing. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):665-670.

Views: 230


ISSN 0514-7506 (Print)