Car-borne measurements of atmospheric no2 by a compact broadband cavity enhanced absorption spectrometer
Abstract
We report car-borne measurements of atmospheric NO2 close to the ground by incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). A compact IBBCEAS spectrometer with a blue light emitting diode (LED) having a central wavelength of 458 nm, a full width at half maximum of 25 nm, and a 50-cm-long cavity was developed for mobile measurements. The NO2 detection limit of the spectrometer was calculated as 1.9 parts per billion by volume (ppbv) for a 30 s acquisition time by stabilizing the LED emitting spectrum, optimizing the NO2 reference cross-sections, and by calibrating the reflectivity of the cavity mirrors. The accuracy of the spectrometer was verified by measuring NO2 samples with various mixing ratios between 1–200 ppbv, which were produced by a gas dilution system in the laboratory. Three distinct journeys in Nanjing and the surrounding areas were selected as observation routes. The atmospheric NO2 close to the ground was measured by the spectrometer from August 4 to 7, 2013. The mixing ratios of NO2 ranged from 3 to 144 ppbv. These results were compared with the column density of NO2 measured by a passive differential optical absorption spectroscopy (DOAS) instrument on the same car. Hence, we demonstrate the feasibility of using the spectrometer for car-borne measurements of atmospheric NO2.
Keywords
About the Authors
L. LingChina
Huainan 232001
Hefei 230031
Y. Huang
China
Huainan 232001
Fengyang 233100
A. Li
China
Hefei 230031
R. Hu
China
Hefei 230031
P. Xie
China
Hefei 230031
References
1. Z. Y. W. Davis, S. Baray, C. A. McLinden, A. Khanbabakhani, W. Fujs, C. Csukat, J. Debosz, R. McLaren, Atm. Chem. Phys., 19, 13871–13889 (2019).
2. F. C. Wu, P. H. Xie, A. Li, F. S. Mou, H. Chen, Y. Zhu, T. Zhu, J. G. Liu, W. Q. Liu, Atm. Chem. Phys., 18, 1535–1554 (2018).
3. A. C. Meier, A. Schonhardt, T. Bosch, A. Richter, A. Seyler, T. Ruhtz, D. E. Constantin, R. Shaiganfar, T. Wagner, A. Merlaud, M. Van Roozendael, L. Belegante, D. Nicolae, L. Georgescu, J. P. Burrows, Atm. Meas. Tech., 10, 1831–1857 (2017).
4. S. E. Fiedler, A. Hese, A. A. Ruth, Chem. Phys. Lett., 371, 284–294 (2003).
5. S. X. Liang, M. Qin, P. H. Xie, J. Duan, W. Fang, Y. B. He, J. Xu, J. W. Liu, X. Li, K. Tang, F. H. Meng, K. D. Ye, J. G. Liu, W. Q. Liu, Atm. Meas. Tech., 12, 2499–2512 (2019).
6. N. Jordan, C. Z. Ye, S. Ghosh, R. A. Washenfelder, S. S. Brown, H. D. Osthoff, Atm. Meas. Tech., 12, 1277–1293 (2019).
7. J. Duan, M. Qin, B. Ouyang, W. Fang, X. Li, K. D. Lu, K. Tang, S. X. Liang, F. H. Meng, Z. K. Hu, P. H. Xie, W. Q. Liu, R. Haesler, Atm. Meas. Tech., 11, 4531–4543 (2018).
8. B. Fang, W. X. Zhao, X. Z. Xu, J. C. Zhou, X. Ma, S. Wang, W. J. Zhang, D. S. Venables, W. D. Chen, Opt. Express, 25, 26910–26922 (2017).
9. K. Ej. Rohrer, Y. Zhang, S. S. Brown, Atm. Meas. Tech., 9, 423–440 (2016).
10. L. Y. Ling, P. H. Xie, M. Qin, W. Fang, Y. Jiang, R. Z. Hu, N. N. Zheng, Chin. Opt. Lett., 11, 063001 (2013).
11. T. Wu, C. Coeur-Tourneur, G. Dhont, A. Cassez, E. Fertein, X. D. He, W. D. Chen, J. Quant. Spectrosc. Radiat. Transf., 133, 199–205 (2014).
12. O. J. Kennedy, B. Ouyang, J. M. Langridge, M. J. S. Daniels, S. Bauguitte, R. Freshwater, M. W. McLeod, C. Ironmonger, J. Sendall, O. Norris, R. Nightingale, S. M. Ball, R. L. Jones, Atm. Meas. Tech., 4, 1759–1776 (2011).
13. S. X. Liang, M. Qin, J. Duan, W. Fang, A. Li, J. Xu, X. Lu, K. Tang, P. H. Xie, J. G. Liu, W. Q. Liu, Acta Phys. Sin., 66, 090704 (2017).
14. Y. Nakashima, Y. Sadanaga, Anal. Sci., 33, 519–524 (2017).
15. H. M. Yi, T. Wu, G. S. Wang, W. X. Zhao, E. Fertein, C. Coeur, X. M. Gao, W. J. Zhang, W. D. Chen, Opt. Express, 24, A781 (2016).
Review
For citations:
Ling L., Huang Y., Li A., Hu R., Xie P. Car-borne measurements of atmospheric no2 by a compact broadband cavity enhanced absorption spectrometer. Zhurnal Prikladnoii Spektroskopii. 2021;88(4):670-679.