Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Manifestation in IR-luminescence of the cross relaxation processes between NV centers in weak magnetic fields

Abstract

We present a combined experimental and theoretical study of the effect of magnetic field on the luminescence from an ensemble of NV centers in diamond. It was found that the intensity of infrared luminescence associated with transitions between singlet levels of NV centers shows a pronounced increase of a near-zero magnetic field. The influence of the power and polarization of laser radiation on the amplitude and shape of the revealed local maximum in IR-luminescence of NV centers is investigated. An eight-level photophysical model of an NV center in the presence of an arbitrarily directed magnetic field has been constructed and on its basis the calculation has been performed of the luminescence intensity emitted by an ensemble of NV center, both in the visible and infrared regions of the spectrum. It is shown that the phenomenological allowance for the cross-relaxation of NV centers between each other and with other paramagnetic centers in a diamond within the framework of this model allows describing the experimentally observed fluorescence features of an ensemble of NV centers in the presence of weak magnetic fields. 

About the Authors

D. S. Filimonenko
Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. M. Yasinskii
Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



A. P. Nizovtsev
Institute of Physics of the National Academy of Sciences of Belarus; National Research Nuclear University “MEPhI”
Belarus

Minsk;

Moscow



S. A. Kilin
Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



F. Jelezko
Institute for Quantum Optics, Ulm University
Germany

Ulm



References

1. [1] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, M. D. Lukin. Science, 336 (2012) 1283—1286

2. [2] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell. Nat. Photon., 3 (2009) 144—147

3. [3] F. Dolde, H. Fedder, M. W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, J. Wrachtrup. Nat. Phys., 7 (2011) 459—463

4. [4] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier. Phys. Rev. Lett., 89 (2002) 187901

5. [5] J. F. Barry, J. M. Schloss, E.Bauch, M. J. Turner, C. A. Hart, L. M. Pham, R. L. Walsworth. Rev. Mod. Phys., 92 (2020) 015004

6. [6] E. van Oort, P. Stroomer, M. Glasbeek. Phys. Rev. B, 42 (1990) 8605—8608

7. [7] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, M. D. Lukin. Nat. Phys., 4 (2008) 810—816

8. [8] E. van Oort, M. Glasbeek. Phys. Rev. B 40 (1989) 6509—6517

9. [9] R. J. Epstein, F. M. Mendoza, Y. K. Kato, D. D. Awschalom. Nat. Phys., 1 (2005) 94—98

10. [10] S. Armstrong, L. J. Rogers, R. L. McMurtrie, N. B. Manson. Physics Procedia, 3, N 4 (2010) 1569—1575

11. [11] S. V. Anishchik, K. L. Ivanov. Phys. Rev. B, 96 (2017) 115142

12. [12] A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, D. Budker. Appl. Phys. Lett., 109 (2016) 053505

13. [13] H. Zheng, Z. Sun, G. Chatzidrosos, C. Zhang, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, D. Budker. Phys. Rev. Appl., 13, N 4 (2020) 044023

14. [14] X. Zhang, G.Chatzidrosos, Y. Hu, H. Zheng, A. Wickenbrock, A. Jerschow, D. Budker. Appl. Sci., 11 (2021) 3069

15. [15] S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, V. A. Bagryansky. New J. Phys., 17 (2015) 023040

16. [16] D. S. Filimonenko, V. M. Yasinskii, A. P. Nizovtsev, S. Ya. Kilin. Semiconductors, 52, N 14 (2018) 1865—1867

17. [17] D. S. Filimonenko, V. M. Yasinskii, A. P. Nizovtsev, S. Ya. Kilin, F. Jelezko. Semiconductors, 54, N 12 (2020) 1730—1733

18. [18] R. Wunderlich, R. Staacke, W. Knolle, B. Abel, J. Meijer. J. Appl. Phys., 130 (2021) 124901

19. [19] R. Akhmedzhanov, L. Gushchin, N. Nizov, V. Nizov, D. Sobgayda, I. Zelensky, P. Hemmer. Phys. Rev. A, 100 (2019) 043844

20. [20] Р. А. Ахмеджанов, Л. А. Гущин, И. В. Зеленский, В. А. Низов, Н. А. Низов, Д. А. Собгайда. Квант. электр., 48, № 10 (2018) 912—915

21. [21] V. M. Acosta, E. Bauch, A. Jarmola, L. J. Zipp, M. P. Ledbetter, D. Budker. Appl. Phys. Lett., 97, N 17 (2010) 174104

22. [22] Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. M. Acosta, A. Jarmola, K. Jensen, P. Kehayias, D. Budker. Phys. Rev. B, 87 (2013) 155202

23. [23] L. J. Rogers, S. Armstrong, M. J. Sellars, N. B. Manson. New J. Phys., 10 (2008) 103024

24. [24] M. W. Doherty. N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. L. Hollenberg. Phys. Rep., 528 (2013) 1—45

25. [25] A. P. Nizovtsev, S. Ya. Kilin, F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup. Opt. Spectr., 94 (2003) 848—858

26. [26] Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский. Квантовая теория углового момента, Ленинград, Наука (1975) 42

27. [27] G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup. Nature, 455 (2008) 648—651

28. [28] M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao, S. D. Bennett, M. Markham, D. J. Twitchen, N. B. Manson, A. Kubanek, M. D. Lukin. Phys. Rev. Lett., 114 (2015) 145502

29. [29] A. P. Nizovtsev, S. Ya. Kilin, A. L. Pushkarchuk, V. A. Pushkarchuk, S. A. Kuten, O. A. Zhikol, S. Schmitt, T. Unden, F. Jelezko. New J. Phys., 20 (2018) 023022

30. [30] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, D. Budker. Phys. Rev. Lett., 108 (2012) 197601

31. [31] A. T. Collins, M. F. Thomaz, M. I. B. Jorge. J. Phys. C, 16 (1983) 2177—2181

32. [32] O. Gazzano, C. Becher. Phys. Rev. B, 95 (2017) 115312

33. [33] H. Duarte, H. T. Dinani, V. Jacques, J. R. Maze. Phys. Rev. B, 103 (2021) 195443

34. [34] M. Mrozek, D. Rudnicki, P. Kehayias, A. Jarmola, D. Budker, W. Gawlik. EPJ Quantum Technology, 2, N 22 (2015) 1—11

35. [35] W. V. Smith, P. P. Sorokin, I. L. Gelles, G. J. Lasher. Phys. Rev., 115 (1959) 1546—1553

36. [36] J. H .N. Loubser, L. Du Preez. Br. J. Appl. Phys., 16, N 4 (1965) 457—462

37. [37] A. Cox, M. E. Newton, J. M. Baker. J. Phys. Condens. Matter, 6 (1994) 551—563

38. [38] R. C. Barklie, J. Guven. J. Phys. C, Solid State Phys., 14 (1981) 3621—3631

39. [39] H. J. Bower, M. C. R. Symons. Nature, 210 (1966) 1037—1038

40. [40] P. R. Briddon, R. Jones. Physica B, 185 (1993) 179—189

41. [41] A. Mainwood. Phys. Rev. B, 49 (1994) 7934—7940

42. [42] E.B. Lombardi, A. Mainwood, K. Osuch, E.C. Reynhardt. J. Phys. Condens. Matter, 15 (2003) 3135—3149

43. [43] C. V. Peaker, M. K. Atumi, J. P. Goss, P. R. Briddon, A. B. Horsfall, M. J. Raysona, R. Jones. Diam. Relat. Mater., 70 (2016) 118—123

44. [44] A. M. Ferrari, S. Salustro, F. S. Gentile, W. C. Mackrodt, R. Dovesi. Carbon, 134 (2018) 354—365

45. [45] H. J. Wang, Ch. S. Shin, S. J. Seltzer, C. E. Avalos, A. Pines, V. S. Bajaj. Nat. Commun., 5 (2014) 4135


Review

For citations:


Filimonenko D.S., Yasinskii V.M., Nizovtsev A.P., Kilin S.A., Jelezko F. Manifestation in IR-luminescence of the cross relaxation processes between NV centers in weak magnetic fields. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):858-871. (In Russ.)

Views: 547


ISSN 0514-7506 (Print)