Quantum-chemical calculation and spectroscopic study of π-conjugation pathway in NH-tautomers of the free base corroles
https://doi.org/10.47612/0514-7506-2021-88-6-836-844
Abstract
he π-conjugation pathway was identified and the degree of aromaticity for the NH-tautomers of the free base corroles was determined by quantum chemistry methods and absorption spectroscopy. Different participation of the macrocycle skeletal atoms in formation of the π-conjugation pathway was established, and it was supposed that conjugation pathway consisting of 18 π-electrons were dominating. At the same time, each of two NH-tautomers possesses its own distinct π-conjugation pathway, which provides the differences in the aromaticity degree. It was shown that architecture of the peripheral substitution of a macrocycle influences the degree of aromaticity. Method of the control over the equilibrium between two NH-tautomers was proposed and experimentally proved. It consists in the design of the electronic density distribution in macrocycle which is characteristic for one of the tautomers.
About the Authors
D. V. KlenitskyBelarus
Minsk
L. L. Gladkov
Belarus
Minsk
I. V. Vershilovskaya
Belarus
Minsk
D. V. Petrova
Russian Federation
Ivanovo
A. S. Semeikin
Russian Federation
Ivanovo
W. Maes
Belgium
Diepenbeek
M. M. Kruk
Russian Federation
Minsk
References
1. J. Juselius, D. Sundholm. Phys. Chem. Chem. Phys., 2 (2000) 2145—2151
2. J.-I. Aichara. J. Phys. Chem. A, 112 (2008) 5305—5311
3. T. D. Lash. J. Porph. Phthal., 15 (2011) 1093—1115
4. H. Fliegl, D. Sundholm. J. Org. Chem., 77 (2012) 3408—3414
5. T. M. Krygowski, H. Szatylovicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak. Chem. Rev., 114 (2014) 6383—6432
6. T. Woller, P. Geerling, F. De Proft, B. Champagne, M. Alonso. Molecules, 23 (2018) 1333
7. Д. Б. Березин, Д. Р. Каримов, А. В. Кустов. Корролы и их производные: синтез, свойства, перспективы практического применения, Москва, ЛЕНАНД (2018)
8. Yu. B. Ivanova, V. A. Savva, N. Zh. Mamardashvili, A. S. Starukhin, T. H. Ngo, W. Dehaen, W. Maes, M. M. Kruk. J. Phys. Chem. A, 116 (2012) 10683—10694
9. M. M. Kruk, T. H. Ngo, P. Verstappen, A. S. Starukhin, J. Hofkens, W. Dehaen, W. Maes, J. Phys. Chem. A, 116 (2012) 10695—10703
10. M. M. Kruk, T. H. Ngo, V. A. Savva, A. S. Starukhin, W. Dehaen, W. Maes. J. Phys. Chem. A, 116 (2012) 10704—10711
11. W. J. D. Beenken, M. Presselt, T. H. Ngo, W. Dehaen, W. Maes, M. M. Kruk. J. Phys. Chem. A, 118 (2014) 862—871
12. D. V. Petrova, A.S. Semeikin, N. M. Berezina, M. B. Berezin, M. I. Bazanov. Macroheterocycles, 12 (2019) 119—128
13. D. N. Laikov. Chem. Phys. Lett., 281 (1997) 151—156
14. Д. Н. Лайков, Ю. А. Устынюк. Изв. РАН. Сер. хим., 3 (2005) 804—810 [D. N. Laikov, Yu. A. Ustynyuk. Russ. Chem. Bull., 54 (2005) 820—826]
15. T. M. Krygowski. J. Chem. Inf. Comp. Sci., 33 (1993) 70—78
16. Н. Н. Крук. Строение и оптические свойства тетрапиррольных соединений, Минск, БГТУ (2019)
17. M. O. Senge, S. A. MacGowan, J. O’Brien. Chem. Commun. (Camb.), 51 (2015) 17031—17063
18. M. M. Kruk, D. V. Klenitsky, W. Maes. Macroheterocycles, 12 (2019) 58—67
19. Н. Н. Крук, Д. В. Кленицкий, Л. Л. Гладков, В. Маес. Тр. БГТУ. Сер. 3. Физ.-мат. науки и информ., 218 (2019) 20—26
20. Н. Н. Крук, Д. В. Кленицкий, В. Маес. Тр. БГТУ. Сер. 3. Физ.-мат. науки и информ., 230 (2020) 7—13
21. Ю. Х. Ажиб, Д. В. Кленицкий, И. В. Вершиловская, Д. В. Петрова, А. С. Семейкин, В. Маес, Л. Л. Гладков, Н. Н. Крук. Журн. прикл. спектр., 87 (2020) 378—386 [Y. H. Ajeeb, D. V. Klenitsky, I. V. Vershilovskaya, D. V. Petrova, A. S. Semeikin, W. Maes, L. L. Gladkov, M. M. Kruk. J. Appl. Spectr., 87 (2020) 421—427]
22. H. Fliegl, S. Taubert, O. Lehtonen, D. Sundholm. Phys. Chem. Chem. Phys., 13 (2011) 202500—20518
23. S. L. Murov, I. Carmichael, G. L. Hug. Handbook of Photochemistry, 2nd ed., New York (1993)
Review
For citations:
Klenitsky D.V., Gladkov L.L., Vershilovskaya I.V., Petrova D.V., Semeikin A.S., Maes W., Kruk M.M. Quantum-chemical calculation and spectroscopic study of π-conjugation pathway in NH-tautomers of the free base corroles. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):836-844. (In Russ.) https://doi.org/10.47612/0514-7506-2021-88-6-836-844