Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Householder transformation in the inverse problem for a complex vibronic analogue of the Fermi resonance

https://doi.org/10.47612/0514-7506-2021-88-6-845-851

Abstract

In the inverse problem for a complex vibronic analogue of the Fermi resonance, the matrix elements of the electron-vibration interaction should be obtained from experimental data, energies Ek and intensities Ik (k = 1, 2, …, n; n ³ 3), a “conglomerate” of lines in the spectrum. This problem in the direct-coupling model, where the Hamiltonian HDIR is specified by the energies of the “dark” states Ai and the matrix elements of their coupling with the “bright” state Bi (i = 1, 2, …, n –1), was solved by the author on the basis of algebraic methods. It is shown that the Hamiltonian HDW of the doorway-coupling model, in which the “bright” state has “interaction” with only single distinguished |DW> state, can be obtained from the Hamiltonian HDIR using the Householder triangularization method, namely, by the similarity transformation HDW = PHDIRP, where P is the reflection matrix which is constructed from the Bi values. The expressions for main elements of the doorway model, namely, the energy of the |DW> state and the matrix element of its coupling with the "bright" state, are obtained. For pyrazine and acetylene molecules, the matrix elements of the Hamiltonian HDW are calculated using the data of the electronic-vibrational-rotational spectra. 

About the Author

V. A. Kuzmitsky
University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus
Belarus

Minsk



References

1. Г. Герцберг. Электронные спектры и строение многоатомных молекул, Москва, Мир (1969)

2. J. Wessel, D. S. McClure. Mol. Cryst. Liq. Cryst., 58 (1980) 121—153

3. J. Kommandeur, W. A. Majewski, W. L. Meerts, D. W. Pratt. Ann. Rev. Phys. Chem., 38 (1987) 433—462

4. M. Drabbels, J. Heinze, W. L. Meerts. J. Chem. Phys., 100 (1994) 165—174

5. В. А. Кузьмицкий. Опт. и спектр., 128 (2020) 1614—1620

6. W. D. Lawrence, A. E. W. Knight. J. Phys. Chem., 89 (1985) 917—925

7. K. K. Lehmann. J. Phys. Chem., 95 (1991) 7556—7557

8. В. А. Кузьмицкий. Опт. и спектр., 101 (2006) 711—717

9. Дж. Х. Уилкинсон. Алгебраическая проблема собственных значений, Москва, Наука (1970)

10. А. А. Макаров, А. Л. Малиновский, Е. А. Рябов. Успехи физ. наук, 182 (2012) 1047—1080

11. A. R. Ziv, W. Rhodes. J. Chem. Phys., 65 (1976) 4895—4905

12. R. Cable, W. Rhodes. J. Chem. Phys., 73 (1980) 4736—4745

13. B. H. Pate, K. K. Lehmann, G. Scoles. J. Chem. Phys., 95 (1991) 3891—3916

14. S. Altanuta, R. W. Field. J. Chem. Phys., 114 (2001) 6557—6561

15. K. L. Bittenger, R. W. Field. J. Chem. Phys., 132 (2010) 134302(1—9)


Review

For citations:


Kuzmitsky V.A. Householder transformation in the inverse problem for a complex vibronic analogue of the Fermi resonance. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):845-851. (In Russ.) https://doi.org/10.47612/0514-7506-2021-88-6-845-851

Views: 463


ISSN 0514-7506 (Print)