Forced degradation studies of nateglinide by the first-order derivative spectrophotometric method and the density functional theory of the nateglinide molecule
Abstract
Nateglinide (NAT) is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus. We evaluated the NAT stability under various forced degradation tests (acidic, basic) and predicted the degradation mechanism of the NAT molecule in the gaseous phase and aqueous media. A firstorder derivative spectrophotometric method was used for the identification of NAT and the products of its degradation. NAT appeared to be stable in acidic but not in basic media. A probable reaction path of the NAT molecule with OH radicals was analyzed. The optimized geometry was calculated with Gauss View 5. Subsequently, the lowest energy status was determined through geometric optimization using Gaussian 09 software. Aiming to determine the intermediates in the photocatalytic degradation mechanism, the geometric optimization of the molecule was realized using the density functional theory method. The activation energy for the probable reaction path was calculated, and their most stable state from the thermodynamic perspective determined for the gaseous phase and aqueous media. The predicted mechanism was confirmed by comparison with the experimental results on simple structures reported in the literature.
Keywords
About the Authors
A. KarasakalRussian Federation
Science and Letters Faculty, Department of Chemistry,
Tekirdag
Y. Y. Gürkan
Russian Federation
Science and Letters Faculty, Department of Chemistry,
Tekirdag
References
1. The Merck Index, 13th ed., Nateglinide, Merck, Inc., Whitehouse Station (2001).
2. C. J. Dunn, D. Faulds, Drugs, 60, 607–617 (2000).
3. WHO, https://www.who.int/health-topics/diabetes, accessed 07.02.2020.
4. A. B. Thomas, S. D. Patil, R. K. Nanda, L. P. Kothapalli, S. S. Bhosle, A. D. Deshpande, Saudi Pharm. J., 19, No. 4, 221–231 (2011).
5. A. Rastogi, K. Jha Kishore, V. Verma, J. Singh, J. Sagar, Pharma Res., 1, 169 (2009).
6. M. Sireesha, R. S. Chandan, B. M. Gurupadayya, A. Shravya, Pharma Chem., 3, 497–506 (2011).
7. D. E. Han, Y. Zheng, N. Li, D. Zhao, G. Zhang, H. Yan, L. Zhang, W. Sun, Y. N. Wu, Y. Lu, X. Chen, Chromatographia, 71, 299–304 (2010).
8. C. B. Ojeda, F. S. Rojas, Anal. Chim. Acta, 518, 1–24 (2004).
9. F. S. Rojas, C. B. Ojeda, J. M. Pavon, Talanta, 35, 753–761 (1988).
10. J. Karpińska, Talanta, 64, 801–822 (2004).
11. A. A. Shirkhedkar, H. C. Bhirud, J. S. Surana, Pak. J. Pharm. Sci., 22, 27–29 (2009).
12. C. Jenee, S. Purvi, P. Margi, P. Kalpana, G. Tejal, J. Taibah Univ. Sci., 11, 729–740 (2017).
13. A. S. Dimal, J. S. Dixita, N. D. Chirag, K. C. Usman, K. B. Kashyap, Arab. J. Chem., 10, 105–108 (2017).
14. International Conference on Harmonization. ICH. Validation of analytical procedures: text and methodology Q2 R1 (2005).
15. International Conference on Harmonization, ICH. Stability testing of new drug substances and products Q1A R2 (2003).
16. V. G. Buxton, L. C. Greenstock, P. W. Helman, B. A. Ross, J. Phys. Chem., 17, 513–886 (1988).
17. M. Anbar, P. Neta, Int. J. Appl. Radiat. Isot., 18, 495–523 (1965).
18. B. Halliwell, M. Grootveld, J. M. C. Gutteridge, Methods Biochem. Anal., 33, 59–90 (2006).
19. A. Hatipoglu, D. Vione, Y. Yalcin, C. Minero, Z. Cinar, J. Photochem. Photobiol. A: Chem., 215, 59–68 (2010).
20. P. W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, New York (1998).
21. K. K. Mierzejewska, J. Trylska, J. Sadlej, J. Mol. Model., 18, 2727–2740 (2012).
22. Gaussian 09, Revision B.04, Gaussian, Inc., Pittsburgh, PA (2009).
23. D. B. Pathare, A. S. Jadhav, M. S. Shingare, Drug Dev. Ind. Pharm., 33, No. 5, 551–557 (2007).
24. Asha Byju Thomas, Shrikrushn, Digambar Patil, Rabindra Kumar Nanda, Lata Prasad Kothapalli, Shital Shridhar Bhosle, Avinash Devidas Deshpande, Saudi Pharm. J., 19, No. 4, 221–231 (2011).
25. K. Basavaiah, N. Rajendraprasad, Austin J. Anal. Pharm. Chem., 5, No. 1, 1096 (2018).
26. A. Karasakal, E. Ozdemir, J. Res. Pharm., 23, No. 3, 457–464 (2019).
Review
For citations:
Karasakal A., Gürkan Y.Y. Forced degradation studies of nateglinide by the first-order derivative spectrophotometric method and the density functional theory of the nateglinide molecule. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):914-919.