Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Remote identification and estimation of the calcium concentration in bulk liquid under high-pressure condition

Abstract

Laser-induced breakdown spectroscopy (LIBS) based stand-off distance analysis of the calcium concentration in bulk liquid under high-pressure condition is carried out. The influence of salinity during the determination of the Ca concentration is studied. Machine learning classifiers are used in the estimation of the unknown Ca concentration in the liquid sample, for different experimental parameters or conditions. From the spectral information, the emission lines related to Ca II at 393 and 396 nm are visualized. Chlorine emission lines are not observed due to the requirement of high ionization energies. As the salinity (NaCl) of the sample solution is increased to 2500 ppm, the signal-to-noise ratio of the LIBS signal is improved by a factor of 0.85. The Ca II emission line peak intensity decreased with increase in ambient pressure conditions and stand-off collection distances. The opposite trend is observed with an increase in the laser fluence and the CaCl2 × 2H2O concentration in the sample solution. The Ca II 393 nm emission time period is estimated at (1/e)I0 peak intensity. A typical Ca II 393 nm emission time period from 6.712 to 6.766 µs is observed. The specified value is obtained for a laser fluence of 9 J/cm2, ambient pressure of 1 atm, stand-off collection distance of 0.6 m, 2500 ppm NaCl, and 1500 ppm CaCl2 × 2H2O. It is observed that the emission time period increased with increase in the CaCl2 × 2H2O concentration in the sample solution and laser fluences. The opposite trend is observed for an increase in the ambient pressure and stand-off distances. The results obtained from the spectral and temporal measurements are in correlation with each other. The best system model's performance metrics of 100% (Accuracy = Precision = Recall = F1-Score) are obtained under the fixed experimental conditions using the k-nearest neighbor classifier. 

About the Authors

J. Sumathi
Department of Electronics Engineering, Madras Institute of Technology Campus – Anna University
India

Chennai-600044, Tamil Nadu



V. Sathiesh Kumar
Department of Electronics Engineering, Madras Institute of Technology Campus – Anna University
Russian Federation

Chennai-600044, Tamil Nadu



K. Veerappan
Department of Electronics Engineering, Madras Institute of Technology Campus – Anna University
Russian Federation

Chennai-600044, Tamil Nadu



References

1. B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, et al., Deep Sea Res. I: Oceanogr. Res. Papers, 95, 20–36 (2015).

2. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, Appl. Spectrosc., 54, No. 3, 331–340 (2000).

3. K. A. Miller, K. F. Thompson, P. Johnston, D. Santillo, Front. Mar. Sci., 4, 418 (2018).

4. S. M. Clegg, R.Wiens, A. K. Misra, S. K. Sharma, J. Lambert, S. Bender, et al., Appl. Spectrosc., 68, No. 9, 925–936 (2014).

5. J. Lasue, R. C. Wiens, S. M. Clegg, D. T. Vaniman, K. H. Joy, et al., J. Geophys. Res.: Planets, 117 (2012).

6. P. Zheng, H. Liu, J. Wang, M. Shi, X. Wang, B. Zhang, et al., J. Anal. At. Spectrom., 30, No. 4, 867–874 (2015).

7. G. U. O. Jinjia, A. S. Mahmoud, L. I. Nan, S. O. N. G. Jiaojian, R. Zheng, Plasma Sci. Technol., 21, No. 3, 034022 (2019).

8. A. P. Michel, M. Lawrence-Snyder, S. M. Angel, A. D. Chave, Appl. Opt., 46, No. 13, 2507–2515 (2007).

9. C. Goueguel, D. L. McIntyre, J. Jain, A. K. Karamalidis, C. Carson, Appl. Opt., 54, No. 19, 6071–6079 (2015).

10. C. Goueguel, J. P. Singh, D. L. McIntyre, J. Jain, A. K. Karamalidis, Appl. Spectrosc., 68, No. 2, 213–221 (2014).

11. C. L. Goueguel, J. C. Jain, D. L. McIntyre, C. G. Carson, H. M. Edenborn, J. Anal. At. Spectrom., 31, 1374–1380 (2016).

12. C. L. Goueguel, C. R. Bhatt, J. C. Jain, C. L. Lopano, D. L. McIntyre, Opt. Laser Technol., 108, 53–58 (2018).

13. N. Li, J. Guo, C. Zhang, Y. Zhang, Q. Li, Y. Tian, R. Zheng, Appl. Opt., 58, No. 14, 3886–3891 (2019).

14. M. Dell’ Aglio, M. Lopez-Claros, J. J. Laserna, S. Longo, A. De Giacomo, Spectrochim. Acta B: At. Spectroscopy, 147, 87 (2018).

15. V. Sathiesh Kumar, Nilesh J. Vasa, R. Sarathi, J. Phys. D: Appl. Phys., 48, 435504 (2015).

16. Rajendhar Junjuri, Arun Prakash Gummadi, Manoj Kumar Gundawar, Optic, 204, 163946 (2020).

17. Tomoko Takahashi, Soichi Yoshino, Yutaro Takaya, TatsuoNozaki, Koichi Ohki, Toshihiko Ohki, Tetsuo Sakka, Blair Thornton, Deep Sea Res. I: Oceanogr. Res. Papers, 158, 103232 (2020).

18. Liwen Sheng, Tianlong Zhang, Guanghui Niu, Kang Wang, Hongsheng Tang, Yixiang Duan, Hua Li, J. Anal. At. Spectrom., 30, 453–458 (2015).

19. H. Li'ao, W. A. N. G. Qianqian, Z. H. A. O. Yu, L. Li, P. Zhong, Plasma Sci. Technol., 18, No. 6, 647 (2016).

20. S Anubha Pearline, V. Sathiesh Kumar, IET Image Process., 13, No. 12, 2176–2182 (2019).

21. S. Marsland, Machine Learning a Algorithm Perspective, 2nd ed., CRC Press (2015).

22. NIST Handbook of basic atomic Spectroscopic data. http://physics.nist.gov/PhysRefData/Handbook/index.htmlS.

23. H. Hou, Y. Tian, Y. Li, R. Zheng, J. Anal. At. Spectrom., 29, 169–175 (2014).


Review

For citations:


Sumathi J., Sathiesh Kumar V., Veerappan K. Remote identification and estimation of the calcium concentration in bulk liquid under high-pressure condition. Zhurnal Prikladnoii Spektroskopii. 2021;88(5):948-961. (In Russ.)

Views: 256


ISSN 0514-7506 (Print)