Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Intermolecular interactions of saxagliptin and vildagliptin with human serum albumin

Abstract

The binding interactions between human serum albumin (HSA) and two anti-diabetic drugs, saxagliptin (SXG) and vildagliptin (VDG), are studied. Different approaches are adopted, including native fluorescence, synchronous fluorescence, UV–Visible absorption, and Fourier-transform infrared (FTIR) analysis, in addition to molecular docking simulations. Moreover, the thermodynamic parameters of the interactions are determined at different temperatures. The obtained results indicate that the intrinsic fluorescence of HSA is quenched via a static mechanism. Values for the binding constant, Ka, are 4.0×104, 2.49×104, and 2.42×104 L/mol for SXG, and 1.13×104, 8.54×103, and 7.15×103 L/mol for VDG at 298, 310, and 318 K, respectively. Evidence from competition experiments with site markers indicate that both SXG and VDG bind HSA primarily at or near site I of the protein. FTIR spectroscopy data indicate an alteration of the protein conformation in the presence of SXG or VDG. Indeed, the results of different spectroscopic analyses indicated that noticeable changes in the protein structure conformation occur following the addition of SXG or VDG. 

About the Authors

S. Barghash
Al-Azhar University
Egypt

Analytical Chemistry Department, Faculty of Pharmacy (Girls), 

Cairo



S. Abd El-Razeq
Al-Azhar University
Egypt

Analytical Chemistry Department, Faculty of Pharmacy (Girls), 

Cairo



H. Elmansi
Mansoura University
Egypt

Faculty of Pharmacy, 

Mansoura



M. A. Elmorsy
Mansoura University
Egypt

Faculty of Pharmacy, 

Mansoura



F. Belal
Mansoura University
Egypt

Faculty of Pharmacy, 

Mansoura



References

1. M. Lúcio, J. L. Lima, S. Reis, Curr. Med. Chem., 17, No. 17, 1795–1809 (2010).

2. F. Hervé, S. Urien, E. Albengres, J. C. Duché, J. P. Tillement, Clin. Pharm., 26, No. 1, 44–58 (1994).

3. J. Koch-Weser, E. M. Sellers, New Engl. J. Med., 294, No. 6, 311–316 (1976).

4. G. A. Ascoli, E. Domenici, C. Bertucci, Chirality, 18, No. 9, 667–679 (2006).

5. S. C. Sweetman, Martindale: The Complete Drug Reference. Drug Monographs, Pharmaceutical Press, London (2011).

6. M. E. Cerf, Front. Endocrinol. (Lausanne), 4, 37 (2013).

7. S. E. Inzucchi, D. K. McGuire, Circulation, 117, No. 4, 574–584 (2008).

8. A. R. Chacra, G. Tan, A. Apanovitch, S. Ravichandran, J. List, R. Chen, et al. Int. J. Clin. Pract., 63, No. 9, 1395–1406 (2009).

9. L. N. Ji, C. Y. Pan, J. M. Lu, H. Li, Q. Li, Q. F. Li, et al. Cardiovasc. Diabetol., 12, No. 1, 118 (2013).

10. M. Takihata, A. Nakamura, K. Tajima, T. Inazumi, Y. Komatsu, H. Tamura, et al. Diabetes Obes. Metab., 15, No. 5, 455–462 (2013).

11. C. Pan, X. J. T. Wang, Ther. Clin. Risk Manag., 9, 247–257 (2013).

12. D. D. Zhang, N. Shi, H. Fang, L. Ma, W. P. Wu, Y. Z. Zhang, et al. Exp. Ther. Med., 15, No. 6, 5100–5106 (2018).

13. Molecular Operating Environment (MOE) JSSW, suite 910, Montreal, QC, Canada, H3A 2R7. Chemical Computing Group ULC (2018).

14. K. Yamasaki, V. T. G. Chuang, T. Maruyama, M. Otagiri, Biochim. Biophys. Acta, 1830, No. 12, 5435–5443 (2013).

15. F. L. Cui, J. Fan, J. P. Li, Z. D. Hu, Bioorg. Med. Chem., 12, No. 1, 151–157 (2004).

16. J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science & Business Media (2013).

17. T. S. Banipal, N. Kaur, P. K. Banipal, J. Mol. Liq., 223, 1048–1055 (2016).

18. F. Hao, M. Jing, X. Zhao, R. Liu, J. Photochem. Photobiol. B: Biol., 143, 100–106 (2015).

19. B. Valeur, J.-C. Brochon, New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, Springer, Berlin (2012).

20. K. Shanmugaraj, S. Anandakumar, M. Ilanchelian, Dyes Pigments, 112, 210–219 (2015).

21. H. Lin, J. Lan, M. Guan, F. Sheng, H. Zhang, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 73, No. 5, 936–941 (2009).

22. M. Guo, W. J. Lü, M. H. Li, W. Wang, Eur. J. Med. Chem., 43, No. 10, 2140–2148 (2008).

23. J. R. Lakowicz, G. Weber, Biochemistry, 12, No. 21, 4161–4170 (1973).

24. W. R. Ware, J. Phys. Chem., 66, No. 3, 455–458 (1962).

25. W. Xiaofang, L. Huizhou, Chin. J. Anal. Chem., 28, No. 6, 699–701 (2000).

26. J.-H. Shi, Y. Y. Zhu, J. Wang, J. Chen, Y. J. Shen, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 103, 287–294 (2013).

27. P. D. Ross, S. Subramanian, Biochemistry, 20, No. 11, 3096–3102 (1981).

28. A. A. Bhattacharya, T. Grüne, S. Curry, J. Mol. Biol., 303, No. 5, 721–732 (2000).

29. A. Barth, BBA-Bioenergetics, 1767, No. 9, 1073–1101 (2007).

30. Y. V. Il'ichev, J. L. Perry, J. Phys. Chem. B, 106, No. 2, 452–459 (2002)


Review

For citations:


Barghash S., Abd El-Razeq S., Elmansi H., Elmorsy M.A., Belal F. Intermolecular interactions of saxagliptin and vildagliptin with human serum albumin. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):974. (In Russ.)

Views: 231


ISSN 0514-7506 (Print)