Visible light spectroscopic analysis of methylene blue in water
Abstract
We herein report a universal calibration curve for the UV-visible spectrophotometric determination of the concentration of polymerizable dyes in solution. The method has been successfully applied to construct a calibration curve of methylene blue in water that is applicable over a wide range of methylene blue and chloride concentrations, regardless of both the aggregate concentration distribution and the temperature. In addition, it was found that the molar fractions of each methylene blue species in solution could be well approximated by means of simple algebraic expressions in the A650/A607 absorbance ratio.
Keywords
About the Authors
A. Fernández-PérezSpain
33011-Oviedo
G. Marbán
Spain
33011-Oviedo
References
1. R. Croce, F. Cinà, A. Lombardo, G. Crispeyn, C. I. Cappelli, M. Vian, et al., Ecotoxicol. Environ. Saf., 144, 79–87 (2017), doi: 10.1016/j.ecoenv.2017.05.046.
2. E. Forgacs, T. Cserháti, G. Oros, Environ. Int., 30, No. 7, 953–971 (2004), doi: 10.1016/j.envint.2004.02.001.
3. A. Fernández-Pérez, G. Marbán, ACS Omega, 5, N 46, 29801–29815 (2020), acsomega.0c03830.
4. N. F. Rosa, O. C. Monteiro, M. F. Camões, R. J. N. B. da Silva, Acc.. Qual. Assur., 22, No. 4, 217–226 (2017), doi: 10.1007/s00769-017-1272-x.
5. G. Marbán, T. T. Vu, T. Valdés-Solís, Appl. Catal. A Gen., 402, 1–2 (2011), doi: 10.1016/j.apcata.2011.06.009.
6. R. Nosrati, A. Olad, S. Shakoori, Mater. Sci. Eng. C, 80, 642–651 (2017), doi: 10.1016/j.msec.2017.07.004.
7. H. Masoumbeigi, A. Rezaee, Heal. Policy Sustain. Heal., 2, 160–166 (2015).
8. A. B. Saleh, M. Abudabbus, World Acad. Sci. Eng. Technol. Int. Sch. Sci. Res. Innov., 7, 6–22 (2013).
9. D. Malik, C. Jain, A. Yadav, R. Kothari, V. Pathak, IRJET, 3, No. 7, 864–880 (2016).
10. M. Hossain, M. Ali, T. Islam, Int. Lett. Chem. Phys. Astron., 77, 26–34 (2018), doi: 10.18052/www.scipress.com/ILCPA.77.26.
11. E. Rabinowitch, L. F. Epstein., J. Am. Chem. Soc., 63, No. 1, 69–78 (1941), doi: 10.1021/ja01846a011.
12. G. N. Lewis, O. Goldschmid, T. T. Magel, J. Bigeleisen, J. Am. Chem. Soc., 65, No. 6, 1150–1154 (1943), doi: 10.1021/ja01246a037.
13. D. R. Lemin, T. Vickerstaff, Trans. Faraday Soc., 43, 491–502 (1947), doi: 10.1039/TF9474300491.
14. K. Ghosh Ashish, Z. Phys. Chem., 94, No. 4-6, 161 (1975), doi: 10.1524/zpch.1975.94.4-6.161.
15. K. Bergmann, C. T. O’Konski, J. Phys. Chem. Am. Chem. Soc., 67, No. 10, 2169–2177 (1963), doi: 10.1021/j100804a048.
16. H. Dunken, D. Schmidt, K. Palm, Z. Chem., 2, No. 11, 349 (1962), doi: 10.1002/zfch.19620021121.
17. W. Spencer, J. R. Sutter, J. Phys. Chem. Am. Chem. Soc., 83, No. 12, 1573–1576 (1979), doi: 10.1021/j100475a004.
18. O. Yazdani, M. Irandoust, J. B. Ghasemi, S. Hooshmand, Dye Pigment, 92, No. 3, 1031–1041 (2012), doi: 10.1016/j.dyepig.2011.07.006.
19. J. B. Ghasemi, M. Miladi, J. Chinese Chem., 56, No. 3, 459–468 (2009), doi: 10.1002/jccs.200900069.
20. P. J. Hillson, R. B. McKay, Trans. Faraday Soc,, 61, 374–382 (1965), doi: 10.1039/TF9656100374.
21. K. Patil, R. Pawar, P. Talap, Phys. Chem. Chem. Phys., 2, No. 19, 4313–4317 (2000).
22. D. Heger, J. Jirkovsk, P. Kln, J. Phys. Chem., 109, No. 30, 6702–6709 (2005), doi: 10.1021/jp050439j.
23. E. Braswell, J. Phys. Chem. Am. Chem. Soc., 72, No. 7, 2477–2483 (1968), doi: 10.1021/j100853a035.
24. Z. Zhao, E. R. Malinowski, Appl. Spectrosc., 53, No. 12, 1567–1574 (1999), doi: 10.1366/0003702991946028.
25. G. Scheibe, Kolloid-Zeitschrift., 82, No. 1, 1–14 (1938), doi: 10.1007/BF01509409.
26. A. K. Ghosh, P. Mukerjee, J. Am. Chem. Soc., 92, No. 22, 6408–6412 (1970), doi: 10.1021/ja00725a003.
27. Z. Klika, P. Čapková, P. Horáková, M. Valášková, P. Malý, R. Macháň, et al., J. Colloid Interface Sci., 311, No. 1, 14–23 (2007), doi: 10.1016/j.jcis.2007.02.034.
28. Z. Klika, Sborník Vědeckých Pr. VŠB-TUOstrava, 2, 53 (1979).
29. Z. Zhao, E. R. Malinowski, J. Chemom., 13, No. 2, 83–94 (1999), doi: 10.1002/(SICI)1099-128X(199903/04)13:23.0.CO;2-2.
30. B. Hemmateenejad, G. Absalan, M. Hasanpour, J. Iran. Chem. Soc., 8, No. 1, 166–175 (2011), doi: 10.1007/bf03246213.
31. A. Fernández-Pérez, T. Valdés-Solís, G. Marbán, Dye Pigment, 161, 448–456 (2019).
32. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Sci. Rep., 5 (2015).
33. G. M. R. Kpinsoton, H. Karoui, Y. Richardson, B. N. S. Koffi, H. Yacouba, J. Motuzas, et al., React. Kinet. Mech. Catal. (2018), doi: 10.1007/s11144-018-1406-0.
34. L. Wolski, M. Ziolek, Appl. Catal. B Environ., 224, 634–647 (2018), doi: 10.1016/j.apcatb.2017.11.008.
35. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. M. Herrmann, Appl. Catal. B Environ., 31, No. 2, 145–157 (2001), doi: 10.1016/S0926-3373(00)00276-9.
36. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, et al., Appl. Catal. B Environ., 39, No. 1, 75–90 (2002), doi: 10.1016/S0926-3373(02)00078-4.
37. R. S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik (Stuttg), 127, No. 18, 7143–7154 (2016), doi: 10.1016/j.ijleo.2016.04.026.
38. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, et al., Thin Solid Films, 516, No. 17, 5881–5884 (2008), doi: 10.1016/j.tsf.2007.10.050.
39. J. H. Potgieter, J. Chem. Educ., 68, No. 4, 349 (1991), doi: 10.1021/ed068p349.
40. M. R. Bayati, F. Golestani-Fard, A. Z. Moshfegh, Appl. Catal. A Gen., 382, No. 2, 322–331 (2010), doi: 10.1016/j.apcata.2010.05.017.
41. N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, et al., Sol. Energy, 97, 147–154 (2013), doi: 10.1016/j.solener.2013.08.023.
42. R. J. N. Bettencourt da Silva, Talanta, 148, 177–190 (2016), doi: 10.1016/j.talanta.2015.10.072.
Review
For citations:
Fernández-Pérez A., Marbán G. Visible light spectroscopic analysis of methylene blue in water. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):976.