Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Mid-infrared dual-band absorber based on nested metamaterial structure

Abstract

A dual-band metamaterial absorber based on nested nanostructures is proposed. Finite-difference timedomain simulations revealed two resonance absorption peaks with narrow half-widths in the mid-infrared, with center wavelengths at 3.87 and 4.57 µm. The structure exhibited extremely high sensitivity with no polarization sensitivity. Triple-band absorption was observed by controlling the thickness of the top pattern layer. The effects of various metallic materials and geometric structures on the absorption are discussed. The nested infrared-absorbing structure has potential applications in sensors and detectors. Furthermore, multiple absorption peaks via thickness changes provide a theoretical basis for future research on multiband absorption. 

About the Authors

Z. Li
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



J. Li
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



Y. Zhang
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



Y. Zhai
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



X. Chu
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



Y. Zhang
International Joint Research Center for Nanophotonics and Biophotonics, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Science at Changchun University of Science and Technology
China

Changchun, 130022



References

1. J. B. Pendry, Phys Rev Lett., 85, No. 18, 3966–3969 (2000).

2. N. Liu, M. Mesch, T. Weiss, et al., Nano Lett., 10, No. 7, 2342–2348 (2010).

3. W. Chen, N. I. Landy, K. Kempa, W. J. Padilla, Adv. Opt. Mater., 1, No. 3, 195 (2013).

4. N. I. Landy, S. Sajuyigbe, J. J. Mock, et al., Phys Rev Lett., 100, No. 20, 207402 (2008).

5. D. Benedikovic, M. Berciano, Alonso-Ramos, et al., Opt. Express, 25, No. 16, 19468–19478 (2017).

6. N. P. Johnson, A. Z. Khokhar, H. M. Chong, Opto-Electron. Rev., 14, No. 3, 187–191 (2006).

7. Kim Taehwan, Bae Ji-Yeul, Lee Namkyu, et al., Adv. Funct. Mater., 73, No. 19, 1–8 (2018).

8. Xun jun He, Liang Qiu, Yue Wang, et al., J. Infrared Milli Terahz Waves, 32, No. 7, 902–913 (2011).

9. G. Duan, J. Schalch, X. Zhao, J. Zhang, et al., Opt. Express, 26, No. 3, 2242–2251 (2018).

10. L. Zhigang, S. Liliana, D. A. Czaplewski, et al., Opt. Express, 26, No. 5, 5616–5631 (2018).

11. J. Yang, C. Xu, S. Qu, et al., J. Adv. Dielectrics, 8, No. 1, 1850007(1–8) (2018).

12. L. Zhao, H. Liu, Z. He, et al., Opt. Commun., 420, 95–103 (2018).

13. J. Schalch, G. Duan, X. Zhao, X. Zhang, R. D. Averitt, Appl. Phys. Lett., 113, No. 6, 61113 (2018).

14. J. A. Mason, S. Smith, D. Wasserman, et al., Appl. Phys. Lett., 98, No. 24, 241105 (2011).

15. Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, et al., Adv. Sci. (Weinh.), 5, No. 7, 1700982 (2018).

16. L. Lei, L. Shun, H. Haixuan, et al., Opt. Express, 26, No. 5, 5686–5693 (2018).

17. Z. Lei, L. Han, H. Zhihong, et al., Opt. Express, 26, No. 10, 12838–12851 (2018).

18. L. Guo, X. Ma, Y. Zou, et al., Opt. Laser Technol., 98, 247–251 (2018).

19. Rodrigo Sergio G, Martín-Moreno Luis, Opt. Lett., 41, No. 2, 293–296 (2018).

20. Zhao Xiaoguang, Duan Guangwu, Wu Ke, S. W. Anderson, Zhang Xin, Adv. Mater., 5, No. 4, 61–68 (2019).

21. Bhardwaj Amit, Sridurai Vimala, Puthoor Navas Meleth, et al., Adv. Opt. Mater., 1, No. 8, 42–51 (2019).

22. R. Singh, C. Rockstuhl, W. Zhang, Appl. Phys. Lett., 97, No. 24, 241108 (2010).

23. K. Chen, R. Adato, H. Altug. ACS nano., 6, No. 9, 7998–8006 (2012).

24. C. Luo, F. Ling, G. Yao, et al., Opt. Express, 24, No. 2, 1518–1527 (2016).

25. Su Yuanyan, Chen Zhi Ning, IEEE Transact. Antenn. Propagation, 1, 1 (2019).

26. Yang Yu Fan, Hu Han Wen, et al., Adv. Opt. Mater., 1, No. 3, 26–33 (2020).

27. Bai Zhongyang, Liu Yongshan, et al., ACS Appl. Mater. Interfaces, 10, No. 20, 8543 (2020).

28. M. Born, E. Wolf, Principle of Optics, Cambridge University (1999).

29. R. C. Rumpf, Prog. Electromag. Res. B, 35, No. 1, 241–261 (2011).

30. L. Li, J. Opt. Soc. Am. A, 14, No. 10, 2758–2767 (1997).


Review

For citations:


Li Z., Li J., Zhang Y., Zhai Y., Chu X., Zhang Y. Mid-infrared dual-band absorber based on nested metamaterial structure. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):981.

Views: 220


ISSN 0514-7506 (Print)