Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

COMPARISON OF THE ANHARMONICITY DEGREE OF POTENTIAL ENERGY SURFACES FOR COMPLEXES AND CLUSTERS WITH HYDROGEN BOND

Abstract

Previously calculated multidimensional potential energy surfaces of the methanol monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine N-oxide/trichloroacetic acid complex, complex in acetonitrile and protonated water dimer were analyzed. Based on the behavior of calculated multidimensional potential energy surfaces, corresponding harmonic potential energy surfaces were constructed for the series of clusters and complexes with hydrogen bond of different strength near the global minimum. This enables to introduce an obvious anharmonicity parameter for the calculated potential energy surfaces. Dependence of the anharmonicity parameter on the size of the analyzed area near the energy minimum, on the number of points, where the energy comparison were implemented, and on the dimensionality of the solved vibrational problem was analyzed. Calculations of the anharmonicity parameter of the potential energy surfaces for complexes with strong, medium and weak hydrogen bonds were performed at the unified conditions. The obtained values of the anharmonicity parameter were compared with the values of the corresponding diagonal anharmonicity constants for the stretching vibrations of the bridging proton, and also with the length of the hydrogen bridges.

About the Authors

E. N. Kozlovskaya
Belarusian State University
Russian Federation


I. Yu. Doroshenko
Taras Shevchenko Kyiv National University
Russian Federation


V. Ye. Pogorelov
Taras Shevchenko Kyiv National University
Russian Federation


Ye. V. Vaskivskyi
Taras Shevchenko Kyiv National University
Russian Federation


G. A. Pitsevich
Belarusian State University
Russian Federation


References

1. J. Ischtwan, M. Collins. J. Chem. Phys., 100 (1994) 8080-8088

2. T. Ho, H. Rabitz. J. Chem. Phys., 104 (1996) 2584-2597

3. P. R. P. Barreto, A. F. Albernaz, F. Palazzetti. Int. J. Quantum Chem., 112 (2012) 834-847

4. E. J. Saavedra, S. A. A. Fernando, D. Suvire, M. A. Zamora, M. L. Freile, R. D. Enriz. Int. J. Quantum Chem., 112 (2012) 2382-2391

5. Yu. N. Panchenko, V. I. Pupyshev, A. V. Abramenkov. J. Mol. Struct., 130 (1985) 355-359

6. Yu. N. Panchenko, V. I. Pupyshev, A. V. Abramenkov. J. Mol. Struct., 140 (1985) 87-92

7. E. Van Leuken, G. Brocks, P. E. S. Wormer. Chem. Phys., 110 (1986) 365-373

8. N. B. Balabanov, K. A. Peterson. J. Chem. Phys., 120 (2004) 6585-6592

9. R. Prosmitia, S. Lopez-Lopez, A. Garcia-Vela. J. Chem. Phys., 120 (2004) 6471-6477

10. Y. Zhou, D. Xiea. J. Chem. Phys., 123 (2005) 134323

11. B. Lowe, M. Pilant, W. Rundell. Soc. Ind. Appl. Math., J. Math. Anal., 23 (1992) 482-504

12. R. Fabiano, R. Knobel, B. Lowe. IMA J. Numer. Anal., 15 (1995) 75-88

13. H. V. Von Geramb. Quantum Inversion Theory and Applications, Springer, New York (1994)

14. T. Ho, H. J. Rabitz. Phys. Chem., 97 (1993) 13447-13456

15. T. Ho, H. Rabitz, S. Choi, M. J. Lester. Chem. Phys., 104 (1996) 1187-1202

16. D. Zhang, J. Light. J. Chem. Phys., 103 (1995) 9713-9720

17. R. Baer, R. Kosloff. J. Phys. Chem., 99 (1995) 2534- 2545

18. M. Shapiro. J. Phys. Chem., 100 (1996) 7859-7866

19. Z. Lu, H. Rabitz. Phys. Rev. A, 52 (1995) 1961-1967

20. W. Zhu, H. Rabitz. J. Chem. Phys., 111 (1999) 472-480

21. K. P. Lawley, I. Prigogine, S. A. Rice. Ab initio Methods in Quantum Chemistry, Advances in Chemical Physics, 67, 69, Wiley, New York (1987)

22. L. Lain, A. Torre, M. Reguero, C. Valdemoro. J. Mol. Struct. (Theochem), 287 (1993) 47-53

23. C. Valdemoro, M. Reguero, L. Lain. Chem. Phys. Lett., 147 (1988) 219-222

24. M. Reguero, C. Valdemoro. Basic Aspects of Quantum Chemistry, Elsevier, Amsterdam (1989)

25. I. Absar, A. J. Coleman. Chem. Phys. Lett., 39 (1976) 609-611

26. D. J. Wales. Science, 293 (2001) 2067-2070

27. D. J. Wales. J. Chem. Phys., 142 (2015) 130901

28. D. Asenjo, J. D. Stevenson, D. J. Wales, D. Frenkel. J. Phys. Chem. B, 117 (2013) 12717-12723

29. M. T. Oakley, R. L. Johnston, D. Wales. J. Phys. Chem. Chem. Phys., 15 (2013) 3965-3976

30. W. Hermoso, N. B. Jaufeerally, P. Ramasami, F. R. Ornellas. Int. J. Quantum Chem., 113 (2013) 112-118

31. A. B. McCoy. Int. J. Quantum Chem., 113 (2013) 366-374

32. F. Rao, A. Caflisch. J. Mol. Biol., 342 (2004) 299-306

33. F. Noé, S. Fischer. Curr. Opin. Struct. Biol., 18 (2008) 154-162

34. D. A. Evans, D. J. Wales. J. Chem. Phys., 118 (2003) 3891-3897

35. G. S. Maciel, P. R. P. Barreto, F. Palazzetti, A. Lombardi, V. Aquilanti. J. Chem. Phys., 129 (2008) 164302

36. G. A. Pitsevich, A. Malevich, V. Sablinskas, Yu. DoroshenkoI., V. E. Pogorelov, E. N. Kozlovskaya, V. Balevicius. Vest. Found. Fund. Res., 63 (2013) 80-87

37. G. A. Pitsevich, A. Malevich, Yu. DoroshenkoI., E. N. Kozlovskaya, V. Ye. Pogorelov, V. Shablinskas, V. Balevichus. Spectrochim. Acta A, 120 (2014) 585-594

38. G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, I. Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, V. Balevichus. Spectrochim. Acta A, 145 (2015) 384-393

39. G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, U. U. Sapeshko. J. Spectrosc. Dyn., 4 (2014) 25

40. G. Rauhut. J. Chem. Phys., 121 (2004) 9313-9322

41. S. K. Burgera, P. W. Ayersb. J. Chem. Phys., 132 (2010) 234110

42. M. R. Peterson, G. I. Csizmadia. J. Mol. Str., 94 (1983) 127-135

43. P. Gomez, M. Fernanoez, L. Sese, V. Botella. J. Mol. Str., 142 (1986) 315-318

44. G. L. Sosaa, N. Peruchena, R. H. Contrerasb, E. A. Castroc. J. Mol. Struct. (Theochem), 401 (1997) 77-85

45. X. Luo, P. G. Mezey. Int. J. Quantum Chem., 41 (1992) 557-579

46. N. J. Wright, R. B. Gerber. J. Chem. Phys., 112 (2000) 2598-2604

47. B. Temelso, G. C. Shields. J. Chem. Theory Comput., 7 (2011) 2804-2817

48. A. G. Csaszar. WIREs Comput. Mol. Sci., 2 (2012) 273-289

49. V. Barone, M. Biczysko, J. Bloino. PCCP, 16 (2014) 1759-1787

50. G. M. Chaban, J. O. Jung, R. B. Gerber. J. Phys. Chem. A, 104 (2000) 2772-2779

51. P. Meier, D. Oschetzki, R. Berger, G. Rauhut. J. Chem. Phys., 140 (2014) 184111

52. B. Njegic, M. S. Gordon. J. Chem. Phys., 129 (2008) 164107

53. Z. Latajka, K. Morokuma, H. Ratajczak, W. J. Orville-Thomas. J. Mol. Struct. (Theochem), 135 (1986) 429-434

54. Z. Latajka, K. Morokuma, H. Ratajczak, W. J. Orville-Thomas. J. Mol. Struct. (Theochem), 146 (1986) 263-266

55. Y. Bouteiller, Z. Latajka, H. Ratajczak, S. Scheiner. J. Chem. Phys., 94 (1991) 2956-2961

56. Y. Bouteiller, Z. Latajka. J. Mol. Struct., 322 (1994) 175-180

57. Y. Bouteiller, Z. Latajka. J. Chem. Phys., 97 (1992) 145-149

58. B. Silvi, R. Wieczorek, Z. Latajka, M. E. Alikhani, A. Dkhissi, Y. Bouteiller. J. Chem. Phys., 111 (1999) 6671-6678

59. Y. G. Smeyers. J. Mol. Struct., 107 (1984) 3-21

60. S. A. Manson, M. M. Law, I. A. Atkinson, G. A. Thomson. Phys. Chem. Chem. Phys., 8 (2006) 2855-2865

61. T. Xie, J. M. Bowman. J. Chem. Phys., 117 (2002) 10487-10493

62. E. Matito, D. Toffoli, O. Christiansen. J. Chem. Phys., 130 (2009) 134104

63. S. Rampino. J. Phys. Chem. A, 120 (2016) 4683-4692

64. M. S. Schuurman, W. D. Allen, P. V. R. Schleyer, H. F. Schaefer III. J. Chem. Phys., 122 (2005) 104302

65. F. Calvo, J. P. K. Doye, D. J. Wales. J. Chem. Phys., 115 (2001) 9627-9636

66. P. Botschwina. J. Chem. Soc., Faraday Trans. 2, 84, N 9 (1988) 1263-1276

67. G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, Yu. I. Doroshenko, V. Shablinskas, V. E. Pogorelov, D. Dovgal’, V. Balevicius. Vibr. Spectrosc., 79 (2015) 67-75

68. G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Mahnach, I. Doroshenko, V. Pogorelov, L. G. M. Pettersson, V. Sablinskas, V. Balevicius. J. Phys. Chem. A, 121 (2017) 2151-2165

69. S. Califano. Vibrational States, Wiley, New York (1976)

70. I. M. Mills. In “Molecular Spectroscopy: Modern Research”, Eds. K. N. Rao, C. W. Mathews, Academic Press, New York (1972)

71. Mathematica, Wolfram Research; Inc. http://www.wolfram.com/mathematica/

72. G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Shalamberidze, I. Doroshenko, V. Pogorelov, E. Mahnach, V. Sapeshko, V. Balevicius. J. Mol. Struct., 1139 (2017) 328-332


Review

For citations:


Kozlovskaya E.N., Doroshenko I.Yu., Pogorelov V.Ye., Vaskivskyi Ye.V., Pitsevich G.A. COMPARISON OF THE ANHARMONICITY DEGREE OF POTENTIAL ENERGY SURFACES FOR COMPLEXES AND CLUSTERS WITH HYDROGEN BOND. Zhurnal Prikladnoii Spektroskopii. 2017;84(6):845-855. (In Russ.)

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)