Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photophysics of Styrylcyanine Molecular Probes in Solutions of Surfactants

Abstract

The nature of the interaction of the dye Sbо ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3ium iodide) and its homodimer Dbо-10 with micelles of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) has been studied using absorption and fluorescence spectroscopy. The mechanism of fluorescence quenching of Sbo dye during the formation of complexes with SDS monomers was analyzed. Binding constants (KS) of dye molecules with surfactants and free energy changes (∆G0) for the probe-micelle binding process were determined. Quantum-chemical calculations of the charge distribution and potential energy of the ground and excited states of the dye molecules were carried out, on the basis of which the increase in the values of the quantum yield and the fluorescence lifetime in micelles is explained. Based on the results obtained, it was revealed that dye molecules are localized in the low-polar environment of micelles, where they are isolated from water molecules.

About the Authors

A. Sh. Yarmukhamedov
Sh. Rashidov Samarkand State University
Uzbekistan

Samarkand



E. N. Kurtaliev
Sh. Rashidov Samarkand State University
Uzbekistan

Samarkand



I. D. Khairov
Sh. Rashidov Samarkand State University
Uzbekistan

Samarkand



N. Nizomov
Sh. Rashidov Samarkand State University
Uzbekistan

Samarkand



References

1. [1] N. Saxena, A. Goswami, P. K. Dhodapkar, M. C. Nihalani, A. Mandal. J. Pet. Sci. Eng., 176 (2019) 299—311, https://doi.org/10.1016/j.petrol.2019.01.052

2. [2] S. Kiani, S. E. Rogers, M. Sagisaka, A. Shirin, A. R. Barron. Energy Fuels, 33 (2019) 3162—3175, https://doi.org/10.1021/acs.energyfuels.9b00391

3. [3] D. R. Pokhrel, M. K. Sah, B. Gautam, H. K. Basak, A. Bhattarai, A. Chatterjee. RSC Adv., 13 (2023) 17685—17704, https://doi.org/10.1039/D3RA02883F

4. [4] N. Azum, M. M. Alotaibi, M. Ali, M. A. Rub, H. M. Marwani, A. Alamry, A. M. Asiri. J. Mol. Liq., 370 (2023) 121057—121065, doi: 10.1016/j.molliq.2022.121057

5. [5] C. N. Kassa, L. T. Salviatto, A. C. Tortamano, K. S. Rost-Lima, C. A. Damante, C. Pavani, A. Deana, I. T. Kato, M. Wainwright, R. A. Prates. Photodiagnosis Photodyn. Ther., 41 (2023) 103194—103199, https://doi.org/10.1016/j.pdpdt.2022.103194

6. [6] S. Iravani. RSC Sustain, 1 (2023) 72—82, https://doi.org/10.1039/D2SU00088A

7. [7] A. V. Lavysh, A. I. Sulatskaya, A. A. Lugovskii, E. S. Voropay, I. M. Kuznetsova, K. K. Turoverov, A. A. Maskevich. J. Appl. Spectr., 81, N 2 (2014) 205—213, https://doi.org/10.1007/s10812-014-9911-z

8. [8] Sh. Sasaki, Y. Niko, A. S. Klymchenko, G. Konishi. Tetrahedron, 70, N 41 (2014) 7551—7559 https://doi.org/10.1016/j.tet.2014.08.002

9. [9] D. Sahoo, S. Chakravorti. J. Photochem. Photobiol., 85 (2009) 1103—1109 https://doi.org/10.1021/jp407342q

10. [10] G. B. Behera, P. K. Behera, B. K. Mishra. J. Surf. Sci. Technol., 23 (2007) 1—31

11. [11] V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, M. Yu. Losytskyy, V. P. Tokar, S. M. Yarmoluk. Dyes Pigm., 67 (2005) 47—54, https://doi.org/10.1016/j.dyepig.2004.10.007

12. [12] N. Nizomov, E. N. Kurtaliev, Sh. N. Nizamov, G. Khodjaev. J. Mol. Struct., 936 (2009) 199—205, https://doi.org/10.1016/j.molstruc.2009.07.040

13. [13] E. N. Kurtaliev. Spectrochim. Acta: Mol. Biomol. Spectrosc., 81 (2011) 449—457, https://doi.org/10.1016/j.saa.2011.06.036

14. [14] E. N. Kurtaliev, N. N. Nizomov, A. Sh. Yarmukhamedov. J. Mol. Struct., 1203 (2020) 127395—127403, https://doi.org/10.1016/j.molstruc.2019.127395

15. [15] F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa. J. Lumin., 44 (1989) 105—112, https://doi.org/10.1016/0022-2313(89)90027-6

16. [16] http://www.openmopac.net.

17. [17] J. P. Stewart. J. Comp. Aided Mol. Desing, 4 (1990) 1—103, https://doi.org/10.1007/BF00128336

18. [18] J. R. Lakowich. Principles of Fluorescence Spectroscopy, New York, Plenum Press (2006)

19. [19] R. K. Mitra, S. S. Sinha. J. Fluores., 18 (2008) 423—432, https://doi.org/10.1007/s10895-007-0282-1

20. [20] S. Mondal, B. Doloi, S. Ghosh. Fluid Phase Equilibria, 360 (2013) 180—187, https://doi.org/10.1016/j.fluid.2013.09.049

21. [21] S. K. Das, A. Bansal, S. K. Dogra. Bull. Chem. Soc. Jpn., 70 (1997) 307—313

22. [22] S. Nigam, M. Belletete, R. S. Sarpal, G. Durocher. J Chem. Soc. Faraday Trans., 91 (1995) 2133—2139, https://doi.org/10.1039/FT9959102133

23. [23] M. S. Bakshi. Cryst. Growth. Des., 16 (2016) 1104—1133, https://doi.org/10.1021/acs.cgd.5b01465

24. [24] A. R. Tehrani-Bagha, K. Holmberg. Materials, 6 (2013) 580—608, https://doi.org/10.3390/ma6020580

25. [25] G. Karlstrom, B. Halle. J. Chem. Soc. Faraday Trans., 1 (1989) 1049—1063

26. [26] T. S. Singh, S. Mitra. J. Colloid Interface Sci., 311 (2007) 128—134, https://doi.org/10.1016/j.jcis.2007.02.046

27. [27] A. I. Sulatskaya, M. I. Sulatsky, O. I. Povarova, N. P. Rodina, I. M Kuznetsova, A. A. Lugovskii, E. S. Voropay, A. V. Lavysh, A. A. Maskevich, K. K. Turoverov. Dyes Pigm., 157 (2018) 385—395, https://doi.org/10.1016/j.dyepig.2018.05.006


Review

For citations:


Yarmukhamedov A.Sh., Kurtaliev E.N., Khairov I.D., Nizomov N. Photophysics of Styrylcyanine Molecular Probes in Solutions of Surfactants. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):793-801. (In Russ.)

Views: 19


ISSN 0514-7506 (Print)