Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Biogenic Silver Nanoparticles Synthesized Using Almond Extract: Physicochemical Properties and Antifungal Efficacy Against Candida albicans

Abstract

Silver nanoparticles (Ag NPs) were synthesized by using the extract of almond kernels as a natural reducing and stabilizing agent. The synthesized Ag NPs were characterized by UV-Vis spectrophotometer, FTIR spectroscopy, XRD characterization, and TEM imaging. As a result, every technique showed that the particle size of Ag NPs was 18–23 nm. It also showed that the synthesized Ag NPs exhibited a moderate cytotoxic effect on normal human fibroblast cell line (BJ1), IC50 was 98.4 μg/mL. According to quantitative PCR (qPCR) data, which evaluate the expression of two virulence-related genes, ALS3 and HWP1, in Candida albicans, it showed that the synthesized Ag NPs suppresses the expression of the main virulence genes of Candida albicans more effectively (1.5 times for ALS3 and 1.2 times for HWP1) than miconazole cream. In vivo, in rats, it was shown that Ag NPs also effectively reduced the fungal load in infected skin tissues over time.

About the Authors

M. Elywa
Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University
Egypt

Mohammed Elywa

Zagazig



M. Abd El-Hamid
Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University
Egypt

Marwa Abd El-Hamid

Zagazig



T. Adel
Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University
Egypt

Toqa Adel

Zagazig



M. Hanafy
Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University
Egypt

Magda Hanafy

Zagazig



References

1. P. Mathur, S. Jha, S. Ramteke, N. K. Jain, Art. Cells Nanomed. Biotechnol., 46, 115–126 (2018), https://doi.org/10.1080/21691401.2017.1414825.

2. S. Jabeen, R. Qureshi, M. Munazir, M. Maqsood, M. Munir, S. S. H. Shah, B. Z. Rahim, Mater. Res. Express, 8, 092001 (2021), https://doi.org/10.1088/2053-1591/ac1de3.

3. S. U. Khan, S. I. Anjum, M. J. Ansari, M. H. U. Khan, S. Kamal, K. Rahman, M. Shoaib, S. Man, A. J. Khan, S. U. Khan, D. Khan, Saudi J. Biol. Sci., 26, 1815–1834 (2019), https://doi.org/10.1016/j.sjbs.2018.02.010.

4. D. T. Rejepov, A. A. Vodyashkin, A. V. Sergorodceva, Y. M. Stanishevskiy, Biomedical Applications of Silver Nanoparticles (Review), Drug Development and Registration, 10, 176–187 (2021), https://doi.org/10.33380/2305-2066-2021-10-3-176-187.

5. I. Pantic, D. Sarenac, M. Cetkovic, M. Milisavljevic, R. Rakocevic, S. Kasas, Curr. Med. Chem., 27, 411–422 (2018), https://doi.org/10.2174/0929867325666180719110432.

6. Q. H. Tran, V. Q. Nguyen, A. T. Le, Adv. Natural Sci.: Nanoscience and Nanotechnology, 4, 049501 (2013), https://doi.org/10.1088/2043-6262/4/3/033001.

7. T. M. Tolaymat, A. M. El Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton, M. Suidan, Sci. Total Environ., 408, 999–1006 (2010), https://doi.org/10.1016/j.scitotenv.2009.11.003.

8. H. H. Lara, D. G. Romero-Urbina, C. Pierce, J. L. Lopez-Ribot, M. J. Arellano-Jiménez, M. Jose-Yacaman, J. Nanobiotechnology, 13, 91 (2015), https://doi.org/10.1186/s12951-015-0147-8.

9. C. Longhi, J. P. Santos, A. T. Morey, P. D. Marcato, N. Duran, P. Pinge-Filho, G. Nakazato, S. F. Yamada-Ogatta, L.M. Yamauchi, Med. Mycol., 54, 428–432 (2016), https://doi.org/10.1093/mmy/myv036.

10. M. Jalal, M. A. Ansari, M. A. Alzohairy, S. G. Ali, H. M. Khan, A. Almatroudi, M. I. Siddiqui, Int. J. Nanomedicine, 14, 4667–4579 (2019), https://doi.org/10.2147/IJN.S210449.

11. N. Perween, H. M. Khan, N. Fatima, J. Microbiol. Exp., 7, 49–54 (2019), https://doi.org/10.15406/jmen.2019.07.00240.

12. A. Arangia, A. Ragno, M. Cordaro, R. D’Amico, R. Siracusa, R. Fusco, F. Marino Merlo, A. Smeriglio, D. Impellizzeri, S. Cuzzocrea, G. Mandalari, R. Di Paola, Int. J. Mol. Sci., 24, 12115 (2023), https://doi.org/10.3390/ijms241512115.

13. A. J. Esfahlan, R. Jamei, R. J. Esfahlan, Food Chem., 120, 349–360 (2010), https://doi.org/10.1016/j.foodchem.2009.09.063.

14. D. Barreca, S. M. Nabavi, A. Sureda, M. Rasekhian, R. Raciti, A. S. Silva, G. Annunziata, A. Arnone, G. C. Tenore, İ. Süntar, G. Mandalari, Nutrients, 12, 672 (2020), https://doi.org/10.3390/nu12030672.

15. C. W. Zhang, X. J. Zhong, Y. S. Zhao, M. S. R. Rajoka, M. H. Hashmi, P. Zhai, X. Song, Pharm. Res. Modern Chin. Med., 7, 100262 (2023), https://doi.org/10.1016/j.prmcm.2023.100262.

16. A. M. Thawabteh, Z. Swaileh, M. Ammar, W. Jaghama, M. Yousef, R. Karaman, S. A. Bufo, L. Scrano, Toxins (Basel), 15, 93 (2023), https://doi.org/10.3390/toxins15020093.

17. S. Wunnoo, S. Paosen, S. Lethongkam, R. Sukkurd, T. Waen-ngoen, T. Nuidate, M. Phengmak, S. P. Voravuthikunchai, Biotechnol. Bioeng., 118 (2021), https://doi.org/10.1002/bit.27675.

18. S. D. Halbandge, A. K. Jadhav, P. M. Jangid, A. V. Shelar, R. H. Patil, S. M. Karuppayil, J. Antibiotics, 72, 640–644 (2019), https://doi.org/10.1038/s41429-019-0185-9.

19. E. Paluch, J. Szperlik, Ł. Lamch, K.A. Wilk, E. Obłąk, Sci. Rep., 11, 8896 (2021), https://doi.org/10.1038/s41598-021-88244-1.

20. G. Wall, D. Montelongo-Jauregui, B. Vidal Bonifacio, J.L. Lopez-Ribot, P. Uppuluri, Curr. Opin. Microbiol., 52, 1–6 (2019), https://doi.org/10.1016/j.mib.2019.04.001.

21. M. B. Esfahani, A. Khodavandi, F. Alizadeh, N. Bahador, Appl. Biochem. Biotechnol., 196, 4205–4233 (2024), https://doi.org/10.1007/s12010-023-04758-6.

22. P. Vinothini, B. Malaikozhundan, R. Krishnamoorthi, M. Dayana Senthamarai, D. Shanthi, Inorg. Chem. Commun., 156, 111–206 (2023), https://doi.org/10.1016/j.inoche.2023.111206.

23. B. Malaikozhundan, J. Vinodhini, M. A. R. Kalanjiam, V. Vinotha, S. Palanisamy, S. Vijayakumar, B. Vaseeharan, A. Mariyappan, Bioprocess Biosyst. Eng., 43 (2020), https://doi.org/10.1007/s00449-020-02346-0.

24. E. Vitális, F. Nagy, Z. Tóth, L. Forgács, A. Bozó, G. Kardos, L. Majoros, R. Kovács, Mycoses, 63 (2020), https://doi.org/10.1111/myc.13049.

25. R. V. Sionov, M. Feldman, R. Smoum, R. Mechoulam, D. Steinberg, Sci. Rep., 10, 134728 (2020), https://doi.org/10.1038/s41598-020-70650-6.

26. I. Ahamad, F. Bano, R. Anwer, P. Srivastava, R. Kumar, T. Fatma, Front Microbiol., 12, 741493 (2022), https://doi.org/10.3389/fmicb.2021.741493.

27. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, R. Sudhakaran, N. Gobi, G. Shanthini, Biocatal. Agric. Biotechnol., 8, 189–196 (2016), https://doi.org/10.1016/j.bcab.2016.09.007.

28. A. M. Ammar, M. I. A. El-Hamid, R. M. S. El-Malt, D. S. Azab, S. Albogami, M. M. Al-Sanea, W. E. Soliman, M. M. Ghoneim, M. M. Bendary, Antibiotics, 10, 1342 (2021), https://doi.org/10.3390/antibiotics10111342.

29. M. C. Arendrup, T. F. Patterson, J. Infectious Diseases, 216, 445–451 (2017), https://doi.org/10.1093/infdis/jix131.

30. I. Syed Ahamed Hussain, V. Jaisankar, Polymer. Test, 62, 154–161 (2017), https://doi.org/10.1016/j.polymertesting.2017.06.021.

31. S. K. Nagaraja, S. Nayaka, R. S. Kumar, Appl. Biochem. Biotechnol., 195, 1197–1215 (2023), https://doi.org/10.1007/s12010-022-04201-2.

32. M. Bhat, B. Chakraborty, R. S. Kumar, A. I. Almansour, N. Arumugam, D. Kotresha, S. S. Pallavi, S. B. Dhanyakumara, K. N. Shashiraj, S. Nayaka, J. King Saud. Univ. Sci., 33, 101296 (2021), https://doi.org/10.1016/j.jksus.2020.101296.

33. K. Gopinath, S. Gowri, A. Arumugam, J. Nanostruct. Chem., 3, No. 1 (2013), https://doi.org/10.1186/2193-8865-3-68.

34. Y. H. Tartor, G. A. Elmowalid, M. N. Hassan, A. Shaker, D. F. Ashour, T. Saber, Front Cell Infect Microbiol., 12, 807218 (2022), https://doi.org/10.3389/fcimb.2022.807218.

35. T. Mosmann, J. Immunol. Methods, 65, 55–63 (1983), https://doi.org/10.1016/0022-1759(83)90303-4.

36. M. I. Thabrew, R. D. Hughes, I. G. Mcfarlane, J. Pharmacy and Pharmacology, 49, 1132–1135 (1997), https://doi.org/10.1111/j.2042-7158.1997.tb06055.x.

37. J. S. Yuan, A. Reed, F. Chen, C. N. Stewart, BMC Bioinformatics, 7, 85 (2006), https://doi.org/10.1186/1471-2105-7-85.

38. G. Arrázola Paternina, F. Dicenta Lopez-Higuera, N. Grané Teruel, Revista de La Facultad de Agronomia, 32 (2015).

39. Akshay, A. Verma, A. Saroha, R. Garg, Int. J. Life Sci. Pharma Res., 12, No. 6, 220–233 (2022), https://doi.org/10.22376/ijpbs/lpr.2022.12.6.

40. N. Gurram, M. Kamble, M. Gunde, A. Ingole, D. Dhabarde, J. Baheti, J. Phytopharm., 6, 171–173 (2017), https://doi.org/10.31254/phyto.2017.6304.

41. R. Surega, B. Anita, S. Ramakrishnan, K. Gunasekaran, S. Nakkeran, Int. J. Curr. Microbiol. Appl. Sci., 9, 1939–1947 (2020), https://doi.org/10.20546/ijcmas.2020.902.221.

42. S. R. Vijayan, P. Santhiyagu, M. Singamuthu, N. Kumari Ahila, R. Jayaraman, K. Ethiraj, Sci. World J. (2014), https://doi.org/10.1155/2014/938272.

43. S. V. Kumar, S. P. Kumar, D. Rupesh, K. Nitin, J. Chem. Pharm. Res., 3, 675–684 (2011).


Review

For citations:


Elywa M., Abd El-Hamid M., Adel T., Hanafy M. Biogenic Silver Nanoparticles Synthesized Using Almond Extract: Physicochemical Properties and Antifungal Efficacy Against Candida albicans. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):829.

Views: 14


ISSN 0514-7506 (Print)