Biogenic Silver Nanoparticles Synthesized Using Almond Extract: Physicochemical Properties and Antifungal Efficacy Against Candida albicans
Abstract
Silver nanoparticles (Ag NPs) were synthesized by using the extract of almond kernels as a natural reducing and stabilizing agent. The synthesized Ag NPs were characterized by UV-Vis spectrophotometer, FTIR spectroscopy, XRD characterization, and TEM imaging. As a result, every technique showed that the particle size of Ag NPs was 18–23 nm. It also showed that the synthesized Ag NPs exhibited a moderate cytotoxic effect on normal human fibroblast cell line (BJ1), IC50 was 98.4 μg/mL. According to quantitative PCR (qPCR) data, which evaluate the expression of two virulence-related genes, ALS3 and HWP1, in Candida albicans, it showed that the synthesized Ag NPs suppresses the expression of the main virulence genes of Candida albicans more effectively (1.5 times for ALS3 and 1.2 times for HWP1) than miconazole cream. In vivo, in rats, it was shown that Ag NPs also effectively reduced the fungal load in infected skin tissues over time.
Keywords
About the Authors
M. ElywaEgypt
Mohammed Elywa
Zagazig
M. Abd El-Hamid
Egypt
Marwa Abd El-Hamid
Zagazig
T. Adel
Egypt
Toqa Adel
Zagazig
M. Hanafy
Egypt
Magda Hanafy
Zagazig
References
1. P. Mathur, S. Jha, S. Ramteke, N. K. Jain, Art. Cells Nanomed. Biotechnol., 46, 115–126 (2018), https://doi.org/10.1080/21691401.2017.1414825.
2. S. Jabeen, R. Qureshi, M. Munazir, M. Maqsood, M. Munir, S. S. H. Shah, B. Z. Rahim, Mater. Res. Express, 8, 092001 (2021), https://doi.org/10.1088/2053-1591/ac1de3.
3. S. U. Khan, S. I. Anjum, M. J. Ansari, M. H. U. Khan, S. Kamal, K. Rahman, M. Shoaib, S. Man, A. J. Khan, S. U. Khan, D. Khan, Saudi J. Biol. Sci., 26, 1815–1834 (2019), https://doi.org/10.1016/j.sjbs.2018.02.010.
4. D. T. Rejepov, A. A. Vodyashkin, A. V. Sergorodceva, Y. M. Stanishevskiy, Biomedical Applications of Silver Nanoparticles (Review), Drug Development and Registration, 10, 176–187 (2021), https://doi.org/10.33380/2305-2066-2021-10-3-176-187.
5. I. Pantic, D. Sarenac, M. Cetkovic, M. Milisavljevic, R. Rakocevic, S. Kasas, Curr. Med. Chem., 27, 411–422 (2018), https://doi.org/10.2174/0929867325666180719110432.
6. Q. H. Tran, V. Q. Nguyen, A. T. Le, Adv. Natural Sci.: Nanoscience and Nanotechnology, 4, 049501 (2013), https://doi.org/10.1088/2043-6262/4/3/033001.
7. T. M. Tolaymat, A. M. El Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton, M. Suidan, Sci. Total Environ., 408, 999–1006 (2010), https://doi.org/10.1016/j.scitotenv.2009.11.003.
8. H. H. Lara, D. G. Romero-Urbina, C. Pierce, J. L. Lopez-Ribot, M. J. Arellano-Jiménez, M. Jose-Yacaman, J. Nanobiotechnology, 13, 91 (2015), https://doi.org/10.1186/s12951-015-0147-8.
9. C. Longhi, J. P. Santos, A. T. Morey, P. D. Marcato, N. Duran, P. Pinge-Filho, G. Nakazato, S. F. Yamada-Ogatta, L.M. Yamauchi, Med. Mycol., 54, 428–432 (2016), https://doi.org/10.1093/mmy/myv036.
10. M. Jalal, M. A. Ansari, M. A. Alzohairy, S. G. Ali, H. M. Khan, A. Almatroudi, M. I. Siddiqui, Int. J. Nanomedicine, 14, 4667–4579 (2019), https://doi.org/10.2147/IJN.S210449.
11. N. Perween, H. M. Khan, N. Fatima, J. Microbiol. Exp., 7, 49–54 (2019), https://doi.org/10.15406/jmen.2019.07.00240.
12. A. Arangia, A. Ragno, M. Cordaro, R. D’Amico, R. Siracusa, R. Fusco, F. Marino Merlo, A. Smeriglio, D. Impellizzeri, S. Cuzzocrea, G. Mandalari, R. Di Paola, Int. J. Mol. Sci., 24, 12115 (2023), https://doi.org/10.3390/ijms241512115.
13. A. J. Esfahlan, R. Jamei, R. J. Esfahlan, Food Chem., 120, 349–360 (2010), https://doi.org/10.1016/j.foodchem.2009.09.063.
14. D. Barreca, S. M. Nabavi, A. Sureda, M. Rasekhian, R. Raciti, A. S. Silva, G. Annunziata, A. Arnone, G. C. Tenore, İ. Süntar, G. Mandalari, Nutrients, 12, 672 (2020), https://doi.org/10.3390/nu12030672.
15. C. W. Zhang, X. J. Zhong, Y. S. Zhao, M. S. R. Rajoka, M. H. Hashmi, P. Zhai, X. Song, Pharm. Res. Modern Chin. Med., 7, 100262 (2023), https://doi.org/10.1016/j.prmcm.2023.100262.
16. A. M. Thawabteh, Z. Swaileh, M. Ammar, W. Jaghama, M. Yousef, R. Karaman, S. A. Bufo, L. Scrano, Toxins (Basel), 15, 93 (2023), https://doi.org/10.3390/toxins15020093.
17. S. Wunnoo, S. Paosen, S. Lethongkam, R. Sukkurd, T. Waen-ngoen, T. Nuidate, M. Phengmak, S. P. Voravuthikunchai, Biotechnol. Bioeng., 118 (2021), https://doi.org/10.1002/bit.27675.
18. S. D. Halbandge, A. K. Jadhav, P. M. Jangid, A. V. Shelar, R. H. Patil, S. M. Karuppayil, J. Antibiotics, 72, 640–644 (2019), https://doi.org/10.1038/s41429-019-0185-9.
19. E. Paluch, J. Szperlik, Ł. Lamch, K.A. Wilk, E. Obłąk, Sci. Rep., 11, 8896 (2021), https://doi.org/10.1038/s41598-021-88244-1.
20. G. Wall, D. Montelongo-Jauregui, B. Vidal Bonifacio, J.L. Lopez-Ribot, P. Uppuluri, Curr. Opin. Microbiol., 52, 1–6 (2019), https://doi.org/10.1016/j.mib.2019.04.001.
21. M. B. Esfahani, A. Khodavandi, F. Alizadeh, N. Bahador, Appl. Biochem. Biotechnol., 196, 4205–4233 (2024), https://doi.org/10.1007/s12010-023-04758-6.
22. P. Vinothini, B. Malaikozhundan, R. Krishnamoorthi, M. Dayana Senthamarai, D. Shanthi, Inorg. Chem. Commun., 156, 111–206 (2023), https://doi.org/10.1016/j.inoche.2023.111206.
23. B. Malaikozhundan, J. Vinodhini, M. A. R. Kalanjiam, V. Vinotha, S. Palanisamy, S. Vijayakumar, B. Vaseeharan, A. Mariyappan, Bioprocess Biosyst. Eng., 43 (2020), https://doi.org/10.1007/s00449-020-02346-0.
24. E. Vitális, F. Nagy, Z. Tóth, L. Forgács, A. Bozó, G. Kardos, L. Majoros, R. Kovács, Mycoses, 63 (2020), https://doi.org/10.1111/myc.13049.
25. R. V. Sionov, M. Feldman, R. Smoum, R. Mechoulam, D. Steinberg, Sci. Rep., 10, 134728 (2020), https://doi.org/10.1038/s41598-020-70650-6.
26. I. Ahamad, F. Bano, R. Anwer, P. Srivastava, R. Kumar, T. Fatma, Front Microbiol., 12, 741493 (2022), https://doi.org/10.3389/fmicb.2021.741493.
27. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, R. Sudhakaran, N. Gobi, G. Shanthini, Biocatal. Agric. Biotechnol., 8, 189–196 (2016), https://doi.org/10.1016/j.bcab.2016.09.007.
28. A. M. Ammar, M. I. A. El-Hamid, R. M. S. El-Malt, D. S. Azab, S. Albogami, M. M. Al-Sanea, W. E. Soliman, M. M. Ghoneim, M. M. Bendary, Antibiotics, 10, 1342 (2021), https://doi.org/10.3390/antibiotics10111342.
29. M. C. Arendrup, T. F. Patterson, J. Infectious Diseases, 216, 445–451 (2017), https://doi.org/10.1093/infdis/jix131.
30. I. Syed Ahamed Hussain, V. Jaisankar, Polymer. Test, 62, 154–161 (2017), https://doi.org/10.1016/j.polymertesting.2017.06.021.
31. S. K. Nagaraja, S. Nayaka, R. S. Kumar, Appl. Biochem. Biotechnol., 195, 1197–1215 (2023), https://doi.org/10.1007/s12010-022-04201-2.
32. M. Bhat, B. Chakraborty, R. S. Kumar, A. I. Almansour, N. Arumugam, D. Kotresha, S. S. Pallavi, S. B. Dhanyakumara, K. N. Shashiraj, S. Nayaka, J. King Saud. Univ. Sci., 33, 101296 (2021), https://doi.org/10.1016/j.jksus.2020.101296.
33. K. Gopinath, S. Gowri, A. Arumugam, J. Nanostruct. Chem., 3, No. 1 (2013), https://doi.org/10.1186/2193-8865-3-68.
34. Y. H. Tartor, G. A. Elmowalid, M. N. Hassan, A. Shaker, D. F. Ashour, T. Saber, Front Cell Infect Microbiol., 12, 807218 (2022), https://doi.org/10.3389/fcimb.2022.807218.
35. T. Mosmann, J. Immunol. Methods, 65, 55–63 (1983), https://doi.org/10.1016/0022-1759(83)90303-4.
36. M. I. Thabrew, R. D. Hughes, I. G. Mcfarlane, J. Pharmacy and Pharmacology, 49, 1132–1135 (1997), https://doi.org/10.1111/j.2042-7158.1997.tb06055.x.
37. J. S. Yuan, A. Reed, F. Chen, C. N. Stewart, BMC Bioinformatics, 7, 85 (2006), https://doi.org/10.1186/1471-2105-7-85.
38. G. Arrázola Paternina, F. Dicenta Lopez-Higuera, N. Grané Teruel, Revista de La Facultad de Agronomia, 32 (2015).
39. Akshay, A. Verma, A. Saroha, R. Garg, Int. J. Life Sci. Pharma Res., 12, No. 6, 220–233 (2022), https://doi.org/10.22376/ijpbs/lpr.2022.12.6.
40. N. Gurram, M. Kamble, M. Gunde, A. Ingole, D. Dhabarde, J. Baheti, J. Phytopharm., 6, 171–173 (2017), https://doi.org/10.31254/phyto.2017.6304.
41. R. Surega, B. Anita, S. Ramakrishnan, K. Gunasekaran, S. Nakkeran, Int. J. Curr. Microbiol. Appl. Sci., 9, 1939–1947 (2020), https://doi.org/10.20546/ijcmas.2020.902.221.
42. S. R. Vijayan, P. Santhiyagu, M. Singamuthu, N. Kumari Ahila, R. Jayaraman, K. Ethiraj, Sci. World J. (2014), https://doi.org/10.1155/2014/938272.
43. S. V. Kumar, S. P. Kumar, D. Rupesh, K. Nitin, J. Chem. Pharm. Res., 3, 675–684 (2011).
Review
For citations:
Elywa M., Abd El-Hamid M., Adel T., Hanafy M. Biogenic Silver Nanoparticles Synthesized Using Almond Extract: Physicochemical Properties and Antifungal Efficacy Against Candida albicans. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):829.





















