Optical characterization of native defects in 4H-SiC irradiated by 10 MeV electrons with subsequent annealing
Abstract
Low-temperature photoluminescence was employed to investigate the defects of 4H-SiC crystals after high-energy electron irradiation, and the annealing characteristics and dependence of the detecting temperature and irradiation doses were investigated. Results showed that the emission, associated with carbon antisite-vacancy (VCCSi)+ defects was dominant in the electron-irradiated 4H-SiC crystal. With increase in detecting temperature, the emission decreased demonstrating red-shifted, and the full width at halfmaximum broadened, which was attributed to the increase in the concentration of carriers arising from thermal activation at high temperature. The emission intensity was the highest value at an irradiation dose of 7.9×1018 e/cm2, and then began to decrease. This revealed the lattice damage caused by long-term high-energy irradiation, which reduced the intensity of the defect radiation in the spectrum.
About the Authors
Y. ZhangChina
Taiyuan, Shanxi 030024.
K. Wang
China
Taiyuan, Shanxi 030024.
H. Wang
China
Taiyuan, Shanxi 030024.
Y. Tian
China
Taiyuan, Shanxi 030024.
Y. Wang
China
Taiyuan, Shanxi 030024.
J. Li
China
Taiyuan, Shanxi 030024.
Y. Chai
China
Taiyuan, Shanxi 030024.
References
1. Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, T. Ohji, K. Hirao, J. Asian Ceram. Soc., 3, 221-229 (2015).
2. Z. Huang, X. Zhang, T. Wang, G. Liu, H. Shao, Y. Wan, G. Qiao, Surf. Coat. Technol., 335, 198-204 (2018).
3. A. Gali, J. Mater. Res., 27, 897-909 (2012).
4. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, D. D. Awschalow, Nature, 479, 84-87 (2011).
5. A. Ellison, B. Magnusson, N. T. Son, L. Storasta, E. Janzen,Mater. Sci. Forum, 433-436, 33-38 (2003).
6. St. G. Muller, M. F. Brady, W. H. Brixius, R. C. Glass, H. Mc D. Hobgood, J. R. Jenny, R. T. Leonard, D. P. Malta, A. R. Powell, V. F. Tsvetkov, S. T. Allen, J. W. Palmour, C. H. Carter, Jr., Mater. Sci. Forum, 433-436, 39-44 (2003).
7. J. W. Steeds, F. Carosella, A. G. Evans, M. M. Ismail, L. R. Danks, W. Voegeli, Mater. Sci. Forum, 353-356, 381-384 (2001).
8. N. T. Son, P. N. Hai, E. Janzen, Phys. Rev. B, 63, 201201(R) (2011).
9. A. Mattausch, M. Bockstedte, O. Pankratov, J. W. Steeds, S. Furkert, J. M. Hayes, W. Sullivan, N. G. Wright, Phys. Rev. B, 73, 161201(R) (2006)
10. S. Nakashima, H. Harima, Phys. Status Solidi (a), 162, 39-64 (1997).
11. J. Steeds, K. Wang, Z. Li, Diamond Relat. Mater., 23, 154-156 (2012).
12. H. Wang, F. D. Medina, D. D. Liu, Y. Zhous, J. Phys.: Condens. Matter, 6, 5373-5386 (1994).
13. J. Garcia Sole, L. E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, Wiley, New York (2005).
14. M. Marco, M. Marianna, C. R. Pier, A. Alberto, J. Phys.: Condens. Matter, 24 135401 (2012).
15. R. C. Powell, Physics of Solid State Laser Materials, Springer Verlag, New York (1998).
16. J. W. Steeds, W. Sullivan, S. A. Furkert, G. A. Evans, Phys. Rev. B, 77, 195203 (2008).
17. J. W. Steeds, Phys. Rev. B, 80, 245202 (2009).
18. S. Castelletto, B. C. Johnson, V. Ivady, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, Nature Mater., 13, 151-156 (2014).
19. H. Iuni, H. Mori, H. Fujita, Philos. Mag. B, 61, 107-124 (1990).
20. M. V. B. Pinheiro, E. Rauls, U. Gerstman, S. Greulich-Weber, H. Overhof, J.-M. Spacth, Phys. Rev. B, 70, 245204 (2004).
Review
For citations:
Zhang Y., Wang K., Wang H., Tian Y., Wang Y., Li J., Chai Y. Optical characterization of native defects in 4H-SiC irradiated by 10 MeV electrons with subsequent annealing. Zhurnal Prikladnoii Spektroskopii. 2020;87(6):891-896.