Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

In vitro and in silico assessment of human serum albumin interactions with omega 3-6-9 fatty acids

Abstract

The interaction between human serum albumin (HSA) and omega 3-6-9 fatty acids (omega-3, omega-6, and omega-9), as unsaturated fatty acids, has been investigated using various methods including UV-Vis spectrophotometry, circular dichroism (CD) spectroscopy, ELISA, lifetime and fluorescence anisotropy measurements, and the visual molecular dynamics (MD) simulation. The thermodynamic parameters of HSA thermal and chemical denaturation were assessed with and without omega 3-6-9 fatty acids. The Tm and ΔG0 (298K) of sole HSA were 327.7 K and 88 kJ/mol respectively. These figures for HSA treatment with 10 µM omega-3, omega-6, and omega-9 were 326.2 K and 87 kJ/mol, 319.07 K and 87 kJ/mol, and 313.23 K and 86 kJ/mol respectively. The same manner of reduction in Gibbs free energy, which is a protein stability criterion, was achieved in chemical denaturation by urea in presence of omega 3-6-9 fatty acids. The interaction of omega 3-6-9 fatty acids with HSA was confirmed after comparing it with L-thyroxin through ELISA assay. Althoug, evaluation of the regular secondary structure of HSA using CD showed a minor change after incubation with omega 3-6-9 fatty acids, its tertiary structure revealed an observable fluctuation. Thus, it seems that the interaction of omega 3-6-9 fatty acids with HSA leads to instability and partial structural changes. Furthermore, the molecular docking results indicated that the binding affinity of omega-3, omega6, and omega-9 to subdomain ІІA of HSA was higher than subdomain ІІIA. These results provide valuable insights into the binding mechanism of omega 3-6-9 fatty acids to HSA, which could play an important role in medicinal drug delivery. 

About the Authors

F. M. Valojerdi
Department of Biology, Science and Research Branch, Islamic Azad University
Islamic Republic of Iran

Tehran



A. Farasat
Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences
Islamic Republic of Iran

Qazvin



N. Gheibi
Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences
Islamic Republic of Iran

Qazvin



References

1. I. Vlasova, A. Saletskii, Russ. J. Phys. Chem. B, 3, No. 6, 976–80 (2009).

2. Z. Tong, J. E. Schiel, E. Papastavros, C. M. Ohnmacht, Q. R. Smith, D. S. Hage, J. Chromatogr. A, 1218, No. 15, 2065–2071 (2011).

3. J. Kang, Y. Liu, M.-X. Xie, S. Li, M. Jiang, Y.-D. Wang, Biochim. Biophys. Acta, 1674, No. 2, 205–214 (2004).

4. T. Hanai, A. Koseki, R. Yoshikawa, M. Ueno, T. Kinoshita, H. Homma, Anal. Chim. Acta, 454, No. 1, 101–108 (2002).

5. V. Lhiaubet-Vallet, Z. Sarabia, F. Boscá, M. A. Miranda, J. Am. Chem. Soc., 126, No. 31, 9538–9539 (2004).

6. M. C. Jiménez, M. A. Miranda, I. Vayá, J. Am. Chem. Soc., 127, No. 29, 10134–10135 (2005).

7. A. Ahmed-Ouameur, S. Diamantoglou, M. Sedaghat-Herati, S. Nafisi, R. Carpentier, H. Tajmir-Riahi, Cell Biochem. Biophys., 45, No. 2, 203–213 (2006).

8. M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, et al., IUBMB Life, 57, No. 12, 787–796 (2005).

9. U. Anand, S. Mukherjee, Biochim. Biophys. Acta, 1830, No. 12, 5394–5404 (2013).

10. A. Varshney, P. Sen, E. Ahmad, M. Rehan, N. Subbarao, R. H. Khan, Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry, 22, No. 1, 77–87 (2010).

11. G. Calviello, S. Serini, Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer, Springer (2010).

12. M. Campagnoli, U. Kragh-Hansen, A. O. Pedersen, A. Amoresano, A. W. Lyon, R. Cesati, et al., Clin. Biochem., 36, No. 8, 597–605 (2003).

13. P. M. Kris-Etherton, W. S. Harris, L. J. Appel, Arteriosclerosis, Thrombosis, and Vascular Biology, 23, No. 2, e20–e30 (2003).

14. A. M. Patwardhan, P. E. Scotland, A. N. Akopian, K. M. Hargreaves, Proc. Natl. Acad. Sci., 106, No. 44, 18820–18824 (2009).

15. N. Gheibi, M. Ghorbani, H. Shariatifar, A. Farasat, PloS One, 14, No. 10, e0224095 (see [16]) (2019).

16. N. Gheibi, M. Ghorbani, H. Shariatifar, A. Farasat, PloS One, 15, No. 3, e0230780 (2020).

17. A. Akya, A. Farasat, K. Ghadiri, M. Rostamian, Genetics and Evolution, 75, 103953 (2019).

18. N. Gheibi, A. Saboury, K. Haghbeen, F. Rajaei, A. Pahlevan, J. Enzyme Inhibition and Med. Chem., 24, No. 5, 1076–1081 (2009).

19. X. Zhang, H. Zhai, R. Gao, J. Zhang, Y. Zhang, X. Zheng, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 121, 724–731 (2014).

20. S. Li, K. Huang, M. Zhong, J. Guo, W.-Z. Wang, R. Zhu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 77, No. 3, 680–686 (2010).

21. D. Agudelo, P. Bourassa, J. Bruneau, G. Berube, É. Asselin, H.-A. Tajmir-Riahi, PloS One, 7, No. 8 (2012).

22. X. Zhang, L. Li, Z. Xu, Z. Liang, J. Su, J. Huang, et al., PLoS One, 8, No. 3, e59106 (2013).

23. D. Weber, L. Milkovic, S. J. Bennett, H. R. Griffiths, N. Zarkovic, T. Grune, Redox Biol., 1, No. 1, 226–233 (2013).

24. M. Nigen, V. Le Tilly, T. Croguennec, D. Drouin-Kucma, S. Bouhallab, Biochim. Biophys. Acta, 1794, No. 4, 709–715 (2009).

25. C. Nick Pace, S. Trevino, E. Prabhakaran, J. Martin Scholtz, Philos. Transt. Roy. Soc. London B: Biol. Sci., 359, No. 1448, 1225–1235 (2004).

26. E. Lindahl, B. Hess, D. Van Der Spoel, Mol. Model. Ann., 7, No. 8, 306–317 (2001).

27. A. W. Schüttelkopf, D. M. Van Aalten, Acta Crystallogr. Sec. D: Biol. Crystallogr., 60, No. 8, 1355–1363 (2004).

28. W. F. van Gunsteren, X. Daura, A. E. Mark, Encyclopedia of Computational Chemistry, 2, Helva Chimica Acta (2002).

29. A. Farasat, F. Rahbarizadeh, G. Hosseinzadeh, S. Sajjadi, M. Kamali, A. H. Keihan, J. Biomol. Struct. Dynam., 35, No. 8, 1710–1728 (2017).

30. S. Ashoka, J. Seetharamappa, P. Kandagal, S. Shaikh, J. Lumin., 121, No. 1, 179–86 (2006).

31. I. Vekshin, Biofizika, 41, No. 6, 1176–1179 (1996).

32. M. Gokara, V. V. Narayana, V. Sadarangani, S. R. Chowdhury, S. Varkala, D. B. Ramachary, et al., J. Biomol. Struct. Dynam., 35, No. 10, 2280–2292 (2017).

33. R. M. Abreu, H. J. Froufe, M. J. R. Queiroz, I. C. Ferreira, Chem. Biol. Drug Des., 79, No. 4, 530–534 (2012).

34. V. Mohan, A. C. Gibbs, M. D. Cummings, E. P. Jaeger, R. L. DesJarlais, Docking: Successes and Challenges. Curr. Pharm. Des., 11, No. 3, 323–333 (2005).

35. Y. Gou, Z. Zhang, D. Li, L. Zhao, M. Cai, Z. Sun, et al., Drug Deliv., 25, No. 1, 321–329 (2018).

36. N. Shahabadi, S. M. Fili, S. Kashanian, J. Coord. Chem., 71, No. 2, 329–341 (2018).

37. N. Shahabadi, B. Bazvandi, A. Taherpour, J. Coord. Chem., 70, No. 18, 3186–3198 (2017).

38. C. Chang, M. T. Nickerson, J. Food Sci. Technol., 55, No. 8, 2850–2861 (2018).


Review

For citations:


Valojerdi F.M., Farasat A., Gheibi N. In vitro and in silico assessment of human serum albumin interactions with omega 3-6-9 fatty acids. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):977.

Views: 224


ISSN 0514-7506 (Print)