Classification of rubber vulcanizing accelerators based on particle swarm optimization extreme learning machine and terahertz spectra
Аннотация
In rubber tire production, three popular types of rubber vulcanizing accelerators exist that are similar in appearance (i.e., 2-Mercaptobenzothiazole, 4,4′-dithiodimorpholine, and tetramethyl thiuram monosulfide). Because the rubber vulcanizing accelerator has a great influence on the vulcanized rubber characteristics, it is necessary to classify and identify the three popular types of rubber vulcanizing accelerators to avoid using the wrong accelerator during tire production and to ensure the tire quality. The THz spectra of the accelerator samples were measured using a terahertz time-domain spectral system (THz-TDS) in a frequency range of 0.3–1.6 THz. An extreme learning machine (ELM) model was constructed to classify the three popular types of rubber vulcanizing accelerators via terahertz absorption spectra. To improve the classification accuracy of the model, a particle swarm optimization ELM model was constructed possessing a higher classification accuracy than the ELM model in the classification and identification of rubber vulcanizing accelerators.
Об авторах
X. YinРоссия
Guangxi Guilin 541004
W. He
Россия
Guangxi Guilin 541004
L. Wang
Россия
Guangxi Guilin 541004
W. Mo
Россия
Guangxi Guilin 541004
A. Li
Россия
Guilin 541004
Список литературы
1. S. H. Baek, J. H. Kang, Y. H. Hwang, K. M. Ok, K. Kwak, H. S. Chun, J. Infrared Millimeter and Terahertz Waves, 37, 486–497 (2016).
2. Y. Hua, H. Zhang, IEEE Trans. Microwave Theory Tech., 58, 2064–2070 (2010).
3. Z. Chen, Z. Zhang, R. Zhu, Yang, Y. Yang, P. B. Harrington, J. Quant. Spectrosc. Radiat. Transf., 167, 1–9 (2015).
4. M. Lu, T. Wang, Y. W. Wang, Chin. Rubber Sci. Technol. Market, 1, 32–34 (2012).
5. F. Yan, J. Chin. Rubber/Plastics Technol. Equip., 43, No. 3, 47 (2017).
6. J. F. Rong, Sh. L. Mao, J. F. Li, J. Phys. Test. Chem. Anal. B: Chem. Anal., 52, No. 7, 750–755 (2016).
7. M. Hangyo, Jpn. J. Appl. Phys., 54, 12010112 (2015).
8. O. Peters, M. Schwerdtfeger, S. Wietzke, et al., J. Polym. Test., 32, 932–936 (2013).
9. Q. Mao, L. Tian, et al., J. Mod. Sci. Instrum., 5, 110–113 (2011).
10. H. B. Guang, J. Neu-Rocomputing, 70, 489–501 (2006).
11. X. T. Shi, J. Y. Pang, X. Zhang, et al., Chin. J. Sci. Instrum., 39, No. 12, 81–91 (2018).
12. R. C. Eberhart, J. Kennedy, Proc. 6th Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, IEEE, 39–43 (1995).
13. Ch. P. Xu, M. Lik, Chin. J. Sci. Instrum., 38, No. 3, 765–772 (2017).
14. T. Chen, Zh. Li, W. Mo, Chin. J. Sci. Instrum., 33, No. 11, 2480–2486 (2012).
15. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, J. Opt. Soc. Am. A Opt. Image SciVis, 18, No. 7, 1562–1571 (2001).
16. L. Duvillaret, F. Garet, J. L. Coutaz, J. Appl. Opt., 38, No. 2, 409–415 (1999).
17. L. Duvillaret, F. Garet, J. L. Coutaz, IEEE J. Sel. Top. Quantum Electron., 2, No. 3, 739–746 (1996).
18. H. Zhang, Z. Li, T. Chen, et al., J. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 184, 335–341 (2017).
Рецензия
Для цитирования:
Yin X., He W., Wang L., Mo W., Li A. Classification of rubber vulcanizing accelerators based on particle swarm optimization extreme learning machine and terahertz spectra. Журнал прикладной спектроскопии. 2021;88(6):980.
For citation:
Yin X., He W., Wang L., Mo W., Li A. Classification of rubber vulcanizing accelerators based on particle swarm optimization extreme learning machine and terahertz spectra. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):980.