Classification of rubber vulcanizing accelerators based on particle swarm optimization extreme learning machine and terahertz spectra
Abstract
In rubber tire production, three popular types of rubber vulcanizing accelerators exist that are similar in appearance (i.e., 2-Mercaptobenzothiazole, 4,4′-dithiodimorpholine, and tetramethyl thiuram monosulfide). Because the rubber vulcanizing accelerator has a great influence on the vulcanized rubber characteristics, it is necessary to classify and identify the three popular types of rubber vulcanizing accelerators to avoid using the wrong accelerator during tire production and to ensure the tire quality. The THz spectra of the accelerator samples were measured using a terahertz time-domain spectral system (THz-TDS) in a frequency range of 0.3–1.6 THz. An extreme learning machine (ELM) model was constructed to classify the three popular types of rubber vulcanizing accelerators via terahertz absorption spectra. To improve the classification accuracy of the model, a particle swarm optimization ELM model was constructed possessing a higher classification accuracy than the ELM model in the classification and identification of rubber vulcanizing accelerators.
Keywords
About the Authors
X. YinRussian Federation
Guangxi Guilin 541004
W. He
Russian Federation
Guangxi Guilin 541004
L. Wang
Russian Federation
Guangxi Guilin 541004
W. Mo
Russian Federation
Guangxi Guilin 541004
A. Li
Russian Federation
Guilin 541004
References
1. S. H. Baek, J. H. Kang, Y. H. Hwang, K. M. Ok, K. Kwak, H. S. Chun, J. Infrared Millimeter and Terahertz Waves, 37, 486–497 (2016).
2. Y. Hua, H. Zhang, IEEE Trans. Microwave Theory Tech., 58, 2064–2070 (2010).
3. Z. Chen, Z. Zhang, R. Zhu, Yang, Y. Yang, P. B. Harrington, J. Quant. Spectrosc. Radiat. Transf., 167, 1–9 (2015).
4. M. Lu, T. Wang, Y. W. Wang, Chin. Rubber Sci. Technol. Market, 1, 32–34 (2012).
5. F. Yan, J. Chin. Rubber/Plastics Technol. Equip., 43, No. 3, 47 (2017).
6. J. F. Rong, Sh. L. Mao, J. F. Li, J. Phys. Test. Chem. Anal. B: Chem. Anal., 52, No. 7, 750–755 (2016).
7. M. Hangyo, Jpn. J. Appl. Phys., 54, 12010112 (2015).
8. O. Peters, M. Schwerdtfeger, S. Wietzke, et al., J. Polym. Test., 32, 932–936 (2013).
9. Q. Mao, L. Tian, et al., J. Mod. Sci. Instrum., 5, 110–113 (2011).
10. H. B. Guang, J. Neu-Rocomputing, 70, 489–501 (2006).
11. X. T. Shi, J. Y. Pang, X. Zhang, et al., Chin. J. Sci. Instrum., 39, No. 12, 81–91 (2018).
12. R. C. Eberhart, J. Kennedy, Proc. 6th Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, IEEE, 39–43 (1995).
13. Ch. P. Xu, M. Lik, Chin. J. Sci. Instrum., 38, No. 3, 765–772 (2017).
14. T. Chen, Zh. Li, W. Mo, Chin. J. Sci. Instrum., 33, No. 11, 2480–2486 (2012).
15. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, J. Opt. Soc. Am. A Opt. Image SciVis, 18, No. 7, 1562–1571 (2001).
16. L. Duvillaret, F. Garet, J. L. Coutaz, J. Appl. Opt., 38, No. 2, 409–415 (1999).
17. L. Duvillaret, F. Garet, J. L. Coutaz, IEEE J. Sel. Top. Quantum Electron., 2, No. 3, 739–746 (1996).
18. H. Zhang, Z. Li, T. Chen, et al., J. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 184, 335–341 (2017).
Review
For citations:
Yin X., He W., Wang L., Mo W., Li A. Classification of rubber vulcanizing accelerators based on particle swarm optimization extreme learning machine and terahertz spectra. Zhurnal Prikladnoii Spektroskopii. 2021;88(6):980.